Project description:Streptococcus suis is an important zoonotic pathogen that can cause meningitis and sepsis in both pigs and humans. In this study,we evaluated the genetic difference of 40 Streptococcus suis strains belonging to various sequence types by comparative genomic hybridization to identify genes associated with the variation in pathogenicity using NimbleGen’s tilling microarray platform. Application of Comparative Phylogenomics to Identify Genetic Differences Relating to Pathogenicity of Streptococcus suis
Project description:We used microarrays to detail the global gene expression changes following apical infection of porcine choroid plexus epithelial cells (PCPEC) with Streptococcus suis (S. suis)
2011-08-15 | GSE23751 | GEO
Project description:Streptococcus suis genomes sequencing
Project description:Streptococcus suis 2 Rgg-dependent transcription was analyzed. Microarray analysis was performed using RNA samples isolated from Streptococcus suis 2 wild-type strain 05ZYH33 as well as RNA isolated from 05ZYH33 rgg isogenic mutant strain during postexponential phases of growth.
Project description:Streptococcus suis is an important zoonotic pathogen that can cause meningitis and sepsis in both pigs and humans. In this study,we evaluated the genetic difference of 40 Streptococcus suis strains belonging to various sequence types by comparative genomic hybridization to identify genes associated with the variation in pathogenicity using NimbleGenM-bM-^@M-^Ys tilling microarray platform. Application of Comparative Phylogenomics to Identify Genetic Differences Relating to Pathogenicity of Streptococcus suis Comparative genomic analysis on the 40 S.suis strains of different serotypes and ST types through tilling arrays
Project description:Identification of Genes and Genomic Islands Correlated with High Pathogenicity through Tilling Microarray-Based Comparative Genomics in S. suis. Streptococcus suis is an important zoonotic pathogen that can cause meningitis and sepsis in both pigs and humans. S. suis isolates have been categorized into groups of different levels of pathogenicity, with sequence type (ST) ST1 clonal complex strains having a higher degree of virulence than other STs. However, the genetic basis of the differences in pathogenicity is still poorly understood. In this study, a comprehensive genomic comparison of 31 S. suis strains from different clinical sources with the genome sequence of the high pathogenicity (HP) strain GZ1 was conducted using NimbleGen’s tilling microarray platform.
Project description:MetQ gene of Streptococcus suis serotype 2 deletion strain has attenuated antiphagocytosis. However,the mechanism of antiphagocytosis and pathogenesis of MetQ in SS2 has remained unclear. In this study, stable isotope labeling by amino acids in cell culture (SILAC) based liquid chromatography-mass spectrometry (LC-MS) and subsequent bioinformatics analysis was used to determine differentially expressed proteins of RAW264.7 cells infected with △MetQ and ZY05719, aimed at elucidating the mechanism of antiphagocytosis and innate immunity of macrophages infected by Streptococcus suis.
Project description:We used microarrays to detail the global gene expression changes following apical infection of porcine choroid plexus epithelial cells (PCPEC) with Streptococcus suis (S. suis) We compared PCPEC either un-treated or infected with wild-type S. suis strain 10 or the acapsular strain 10cpsDEF, respectively, to determine global gene expression changes by microarray analysis