Project description:Longissimus muscle samples were collected from lambs exposed in utero to mycotoxins (E-, endophyte-free tall fescue seed without ergot alkaloids or E+, endophyte-infected tall fescue seed containing ergot alkaloids) during mid-gestation (MID; E+/E-; N) or late-gestation (LATE; E-/E+; T) harvested at two developmental stages (FETAL, gestational d133) or (MKT, near maturity, 250 d of age). Muscle samples were examined to determine the impact of in utero mycotoxin exposure on skeletal muscle fiber hypertrophy and the miRNA transcriptome at FETAL and MKT.
Project description:Background: Dendrobium officinale, an endangered Chinese herb, has extensive therapeutic effects and contains bioactive ingredients including a large number of polysaccharides and alkaloids, and minimal flavonoids. Firstly, this study attempts to obtain the protocorm-like bodies of this plant through tissue culture to produce the main secondary metabolites whose distribution in each organelle and protocorm like bodies is analyzed. Then, analysis of the correlation between comparative transcriptome sequence and the metabolite content in different organs enables the discovery of putative genes encoding enzymes involved in the biosynthesis of polysaccharides and alkaloids, and flavonoids. Results: The optimum condition for protocorm-like bodies (PLBs) induction and propagation of D. officinale is established. For protocorm induction, we use the seed as the explant, and the optimum medium formula for PLBs propagation is 1/2 MS + α-NAA 0.5 mg·L-1 +6-BA 1.0 mg·L-1 + 2, 4-D 1.5-2.0 mg·L-1 + potato juice 100 g·L-1. The distribution of polysaccharides, alkaloids and flavonoids in D. officinale organs was clarified. Stems, PLBs and leaves have the highest content of polysaccharides, alkaloids and flavonoids, respectively. PLBs replace organs to produce alkaloids in D. officinale, and naringenin was only produced in stem. Hot water extraction (HWE) method was found outperforming the ultrasound-assisted extraction (UAE) method for polysaccharides from D. officinale. A comparative transcriptome analysis of the protocorm-like bodies and leaves of D. officinale showed genes encoding enzymes involved in polysaccharides, alkaloids and flavonoids biosynthetic pathway were differentially expressed. Putative genes encoding enzymes involved in polysaccharides, alkaloids and flavonoids synthetic pathway were identified. Notably, genes encoding enzymes of strictosidine beta-glucosidase, geissoschizine synthase and vinorine synthase in alkaloids biosynthesis of D. officinale are first reported. Conclusions: Our works, especially the identification of candidate genes encoding enzymes involved in metabolites biosynthesis will help to explore and protect the endangered genetic resources and will also facilitate further analysis of the molecular mechanism of secondary metabolites’ biosynthesis in D. officinale.
Project description:Catharanthus roseus produces a variety of indole alkaloids with significant biological activities. The indole alkaloids including catharanthine, vindolinine, ajmalicine and the precursor strictosidine were dramatically induced in the leaves following binary stress. To profile the modification of indole alkaloids in C. roseus seedlings under the binary stress of ultraviolet-B irradiation and dark incubation, gel-free proteomic analysis was carried out to uncover the underlying molecular mechanism.
Project description:In previous work, cephalotaxine, harringtonine, homoharringtonine were shown to be accumulated differentially after various stimuli. Especially, after MeJA treatment, the concentration of 3 cephalotaxus alkaloids all showed decreasing. We speculated that the genes expressed lower after MeJA treatment might encode some enzymes responsible for the biosynthesis of cephalotaxus alkaloids. Therefore, choosing the sample treated with MeJA and the control sample for comparative iTRAQ analysis will greatly facilitate dissection of the genes involved in the biosynthesis of cephalotaxus alkaloids and even the acyl portions of cephalotaxus ester alkaloids. This approach is widely used for mining and identifying novel genes in the biosynthesis of secondary metabolites without genome data in plants.
Project description:RNA-seq was employed to detect hepatic differential expression genes between pyrrolizidine alkaloids-induced liver injury mice and the untreated ones.
Project description:The goal of this study is to investigate differential transcription profiles of leaf material/cells accumulating different levels of alkaloids in the anticancer plant Catharanthus roseus.
Project description:Transcriptomic data from seven different tissues of Z. nitidum were collected to unveil the functional patterns of the BBE family in the biosynthesis of benzophenanthridine alkaloids
Project description:In the current study, RNA sequencing was used to comparatively elaborate the activities and the effects of the alkaloids, boldine, bulbocapnine, and roemerine along with the well-known antibacterial alkaloid berberine on Bacillus subtilis cells.