Project description:The giant panda (Ailuropoda melanoleuca) stands as a flagship and umbrella species, symbolizing global biodiversity. While traditional assisted reproductive technology faces constraints in safeguarding the genetic diversity of giant pandas and bolstering the population size of giant pandas, induced pluripotent stem cells (iPSCs) known for their capacity to differentiate into diverse cells types, including germ cells, present a transformative potential for conservation of endangered animals. In our study, we isolated primary fibroblast cells from an individual giant panda and successfully generated giant panda induced pluripotent stem cells (GPiPSCs) through a non-integrating episomal vectors reprogramming method. Characterization of these GPiPSCs revealed their state of primed pluripotency and demonstrated their potential for differentiation. Furthermore, we innovatively formulated a species-specific chemically defined FACL medium and unraveled the intricate signaling pathway networks responsible for maintaining the pluripotency and fostering cell proliferation of GPiPSCs. This study provides key insights into rare species iPSCs, offering materials for panda characteristics research and laying the groundwork for in vitro giant panda gamete generation, potentially aiding endangered species conservation.
Project description:Clinical treatment protocols for infertility with in vitro fertilization-embryo transfer (IVF-ET) provide a unique opportunity to assess the human vaginal microbiome in defined hormonal milieu. Herein, we have investigated the association of circulating ovarian-derived estradiol (E2) and progesterone (P4) concentrations to the vaginal microbiome. Thirty IVF-ET patients were enrolled in this study, after informed consent. Blood was drawn at four time points during the IVF-ET procedure. In addition, if a pregnancy resulted, blood was drawn at 4-to-6 weeks of gestation. The serum concentrations of E2 and P4 were measured. Vaginal swabs were obtained in different hormonal milieu. Two independent genome-based technologies (and the second assayed in two different ways) were employed to identify the vaginal microbes. The vaginal microbiome underwent a transition with a decrease in E2 (and/or a decrease in P4). Novel bacteria were found in the vagina of 33% of the women undergoing IVF-ET. Our approach has enabled the discovery of novel, previously unidentified bacterial species in the human vagina in different hormonal milieu. While the relationship of hormone concentration and vaginal microbes was found to be complex, the data support a shift in the microbiome of the human vagina during IVF-ET therapy using standard protocols. The data also set the foundation for further studies examining correlations between IVF-ET outcome and the vaginal microbiome within a larger study population.
Project description:The iconic giant panda is an endangered species known worldwide for its peculiar dietary habits. While retaining the digestive system of a carnivore, the giant panda successfully moved into a diet almost exclusively based on bamboo. Digestion of lignocellulose is believed to be conducted solely by its gut microbiome, provided that no lignocellulose-degrading enzyme was found in the giant panda’s genome. Many reports focused on which lignocellulose component feeds the giant panda, while little effort was made to link the products of bamboo fermentation to the panda’s dietary choices. In the present study, fermentation of either green leaves or yellow pith was conducted in the laboratory using gut microbiomes derived from either green or yellow stools, respectively. Green leaves were fermented to ethanol, lactate and acetate, while yellow pith to lactate resembling, respectively, hetero/homo-fermentation patterns. Several microbial pathways (assessed by metaproteomics) related to hemicellulose rather than cellulose degradation. However, alpha-amylases (E.C. 3.2.1.1) from the giant panda itself were the most predominant enzyme (up to 60% of all metaproteins), indicating that they have a primary role in bamboo digestion. The distinct fermentation profiles resulting from digestion of selected portions of bamboo may be part of the feeding strategy of giant pandas.
Project description:The goal of this study was to identify amylases that might be present in the vaginal fluid from four individual donors coming either from the microbiome or expressed by the human donors in these fluids. We collected cervicovaginal mucus from 4 donors, characterized the species composition of vaginal communities by genome sequencing. Samples were digested with trypsin, then analyzed by LC-MS/MS. Data was searched with MaxQuant and downstream data analysis was performed using RomicsProcessor.
2020-05-05 | MSV000085378 | MassIVE
Project description:Fungal detection of vaginal secretions in estrus and non-estrus of giant pandas
| PRJNA967177 | ENA
Project description:Shotgun metagenomic sequencing of vaginal microbiome
Project description:we applied RNA-seq to detect novel expressed transcripts in 12 tissues of giant pandas, using a transcriptome reconstruction strategy combining reference-based and de novo methods. Then we used mass spectrometry method to identify proteomes of five selected tissues, aiming at validating these novel full-length genes we identified.
2015-12-23 | PXD002917 | Pride
Project description:Human vaginal microbiome study