Project description:The non-typhoidal Salmonella enterica serotype Heidelberg is a major foodborne pathogen primarily transmitted to humans through contaminated poultry products. Current control measures emphasize novel approaches to mitigate Salmonella Heidelberg colonization in poultry and the contamination of poultry products, thereby reducing its transmission to humans. This study highlight that commensal E. coli 47-1826 can potentially be used to control of S. Heidelberg 18-9079 in poultry
Project description:Salmonella enterica Pullorum(S. Pullorum) is one of the most important pathogens in poultry. A better understanding of the immune response and molecular modulation resulting from infection by S. Pullorum will facilitates the control of this pathogen. In this study, we determined the relationships among identified differential expressed genes (DEGs) and pathways via deeply mining microarray data from Guangxi Huang Chicken challenged with S. Pullorum.
Project description:FabR ChIP-chip on Salmonella enterica subsp. enterica serovar Typhimurium SL1344 using anti-Myc antibody against strain with chromosomally 9Myc-tagged FabR (IP samples) and wildtype strain (mock IP samples)
Project description:We performed affinity purification coupled to quantitative mass spectrometry (AP-qMS) for proteins belonging to retrons of Salmonella enterica. We quantified the proteome of rcaT point mutants in Salmonella enterica. We quantified the proteome of phage P1vir in E. coli.
Project description:Salmonella being one of the major infectious diseases in poultry causes considerable economical losses in terms of mortality and morbidity especially in countries which lack effective vaccination programs. Salmonellosis is considered to be most important zoonotic disease which causes considerable foodborne illness that leads to enormous economic loses. To minimize such losses, enhancing disease resistance to different pathogens seems to be a promising strategy. The indigenous chicken, evolved through thousands of years of natural selection, are well adapted to the local climatic conditions with better resistance to diseases. In the present study we investigated liver and spleen transcriptome profile of indigenous (Kashmir faverolla) breed and commercial broiler poultry at day 5 post-inoculation with Salmonella typhimurium using RNA sequencing. The DEGs and pathways identified shall provide potential targets to enhance disease resistance in poultry through successful breeding programmes.
Project description:This is a dynamic mathematical model describing the development of the cellular branch of the intestinal immune system of poultry during the first 42 days of life, and of its response towards an oral infection with Salmonella enterica serovar Enteritidis.