Project description:The Oxford Nanopore technology has a great potential for the analysis of genome methylation, including full-genome methylome profiling. However, there are certain issues while identifying methylation motif sequences caused by low sensitivity of the currently available motif enrichment algorithms. Here, we present Snapper, a new highly-sensitive approach to extract methylation motif sequences based on a greedy motif selection algorithm. Snapper has shown higher enrichment sensitivity compared with the MEME tool coupled with Tombo or Nanodisco instruments, which was demonstrated on H. pylori strain J99 studied earlier using the PacBio technology. In addition, we used Snapper to characterize the total methylome of a new H.pylori strain A45. The analysis revealed the presence of at least 4 methylation sites that have not been described for H. pylori earlier. We experimentally confirmed a new CCAG-specific methyltransferase and indirectly inferred a new CCAAK-specific methyltransferase.
Project description:Infinium® HumanMethylation450 BeadChip and EPIC arrays were run with the aim of using the methylation profiles (n=986 in total) for sarcoma subtype classification (Paper: Lyskjær et al, 2021, DNA methylation-based profiling of bone and soft tissue tumours: a validation study of the ‘DKFZ sarcoma Classifier’ ). 500ng of DNA from fresh frozen (FT) or formalin-fixed paraffin-embedded (FFPE) tumour samples were bisulfite converted using the Zymo EZ DNA methylation Gold kit (Zymo Research Corp. Irvine, USA) before hybridisation to the Infinium HumanMethylation450 or EPIC beadchip arrays (Illumina, San Diego, CA) by UCL Genomics. All bisulfite-converted FFPE samples were restored with the Infinium FFPE DNA Restore kit (Illumina).
Project description:DNA methylation profiling of the entire genome of articular cartilage extracted from human foetal samples across a range of gestational periods. Profiling of 72 samples was performed with Illumina HumanMethylation850 EPIC v1.0 microarrays, measuring methylation at approximately 850K sites.
Project description:Genome-wide DNA methylation profiling using the Illumina EPIC 850k DNA methylation BeadChip array on 8 pools of human genomic DNA from whole blood for 190 individuals age matched at 4 time points; ~4, ~28, ~63, & ~78 years.
Project description:Genome wide DNA methylation in blood, subcutaneous and omental visceral adipose tissue from two-step surgical approach (N=9) was analysed in patients with severe obesity using Illumina 850K EPIC technology before and after metabolic surgery (Leipzig Obesity BioBank (LOBB) cohort). Additionally, a validation blood cohort of patients with obesity undergoing metabolic surgery was analyzed for results validation.
Project description:We explored changes at gene-level or transcript-level in embryonic stem cells, before and after in vitro differentiation with retinoic acid. RNA was sequenced both via Illumina short reads, and with Oxford Nanopore Technology with cDNA and direct RNA sequencing.