Project description:Pilot study on leaves from Papua New Guinea showing soil toxicity, extracted in RNAlater in one case and MQ water in another, also MQ blanks
Project description:Bats are speculated to be reservoirs of several emerging viruses including coronaviruses (CoVs) that cause serious disease in humans and agricultural animals. These include CoVs that cause severe acute respiratory syndrome (SARS), Middle East respiratory syndrome (MERS), porcine epidemic diarrhea (PED) and severe acute diarrhea syndrome (SADS). Bats that are naturally infected or experimentally infected do not demonstrate clinical signs of disease. These observations have allowed researchers to speculate that bats are the likely reservoirs or ancestral hosts for several CoVs. In this review, we follow the CoV outbreaks that are speculated to have originated in bats. We review studies that have allowed researchers to identify unique adaptation in bats that may allow them to harbor CoVs without severe disease. We speculate about future studies that are critical to identify how bats can harbor multiple strains of CoVs and factors that enable these viruses to "jump" from bats to other mammals. We hope that this review will enable readers to identify gaps in knowledge that currently exist and initiate a dialogue amongst bat researchers to share resources to overcome present limitations.
Project description:Bats can harbor many pathogens without showing disease. However, the mechanisms by which bats resolve these infections or limit pathology remain unclear. To illuminate the bat immune response to coronaviruses, viruses with high public health significance, we will use serum proteomics to assess broad differences in immune proteins of uninfected and infected vampire bats (Desmodus rotundus). In contrast to global profiling techniques of blood such as transcriptomics, proteomics provides a unique perspective into immunology, as the serum proteome includes proteins from not only blood but also those secreted from proximal tissues. Here, we expand our recent work on the serum proteome of wild vampire bats (Desmodus rotundus) to better understand CoV pathogenesis. Across 19 bats sampled in 2019 in northern Belize with available sera, we detected CoVs in oral or rectal swabs from four individuals. We used data independent acquisition-based mass spectrometry to profile and compare the undepleted serum proteome of these 19 bats. These results will provide much needed insight into changes in the bat serum proteome in response to coronavirus infection.
Project description:Bats are remarkably long-lived for their size with many species living more than 20-40 years, suggesting that they possess efficient anti-aging and anti-cancer defenses. Here we investigated requirements for malignant transformation in primary bat fibroblasts in four bat species - little brown bat (Myotis lucifugus), big brown bat (Eptesicus fuscus), cave nectar bat (Eonycteris spelaea) and Jamaican fruit bat (Artibeus jamaicensis) – spanning the bat evolutionary tree and including the longest-lived genera. We show that bat fibroblasts do not undergo replicative senescence and express active telomerase. Bat cells displayed attenuated stress induced premature senescence with a dampened secretory phenotype. Unexpectedly, we discovered that bat cells could be readily transformed by only two oncogenic perturbations or “hits”: inactivation of either p53 or pRb and activation of oncogenic RASV12. This was surprising because other long-lived mammalian species require up to five hits for malignant transformation. Additionally, bat fibroblasts exhibited increased p53 and MDM2 transcript levels, and elevated p53-dependent apoptosis. The little brown bat showed a genomic duplication of the p53 gene. We hypothesize that bats evolved enhanced p53 activity through gene duplications and transcriptional upregulation as an additional anti-cancer strategy, similar to elephants. In summary, active telomerase and the small number of oncogenic hits sufficient to malignantly transform bat cells suggest that in vivo bats rely heavily on non-cell autonomous mechanisms of tumor suppression.