Project description:Neonatal necrotizing enterocolitis (NEC) is a deadly and unpredictable gastrointestinal disease, for which no biomarkers exist. We aimed to describe the methylation patterns in stool and colon from infants with NEC.
Project description:Dysbiotic configurations of the human gut microbiota have been linked with colorectal cancer (CRC). Human small non-coding RNAs are also implicated in CRC and recent findings suggest that their release in the gut lumen contributes to shape the gut microbiota. Bacterial small RNAs (bsRNAs) may also play a role in carcinogenesis but their role is less explored. Here, we performed small RNA and shotgun sequencing on 80 stool specimens of patients with CRC, or adenomas, and healthy subjects collected in a cross-sectional study to evaluate their combined use as a predictive tool for disease detection. We reported a considerable overlap and correlation between metagenomic and bsRNA quantitative taxonomic profiles obtained from the two approaches. Furthermore, we identified a combined predictive signature composed by 32 features from human and microbial small RNAs and DNA-based microbiome able to accurately classify CRC from healthy and adenoma samples (AUC= 0.87). In summary we reported evidence that host-microbiome dysbiosis in CRC can be observed also by altered small RNA stool profiles. Integrated analyses of the microbiome and small RNAs in the human stool may provide insights for designing more accurate tools for diagnostic purposes.
Project description:Assessment of diet currently relies on self-reporting, such as food logs, 24 hour recalls and food frequency questionnaires. Self-reporting of diet is inaccurate due to memory lapses, lying and biased language. A molecular-based approach to assess diet would allow accurate reporting of diet for researchers, medical professionals and patients. We performed metaproteomic analysis of five human stool samples collected from a free-eating individual over five consecutive days (25Jun18-29Jun18). The free-eating individual maintained a food log during the sample collection period. We used these samples to develop a molecular-based approach for assessing diet.
Project description:Small RNA-Seq analysis of on stool samples from an Italian cohort of 120 healthy individuals with three dietary habits. The cohort includes 72 women and 48 men included an equal proportion of vegetarians, vegans and omnivores.
Project description:Longitudinal analysis of Salmonella typhimurium mRNA from superspeader mouse cecal content and stool compared to in vitro Salmonella typhimurium mRNA.
Project description:Combined community health programs aiming at health education, preventive antiparasitic chemotherapy, and vaccination of pigs have proven their potential to regionally reduce and even eliminate Taenia solium infections that are associated with a high risk of neurological disease through ingestion of T. solium eggs. Yet it remains challenging to target T. solium endemic regions precisely or to make exact diagnoses in individual patients. One major reason is that the widely available stool microscopy may identify Taenia ssp. eggs in stool samples as such, but fails to distinguish between invasive (T. solium) and less invasive Taenia (T. saginata, T. asiatica, and T. hydatigena) species. The identification of Taenia ssp. eggs in routine stool samples often prompts a time-consuming and frequently unsuccessful epidemiologic workup in remote villages far away from a diagnostic laboratory. Here we present “mail order” single egg RNA-sequencing, a new method allowing the identification of the exact Taenia ssp. based on a few eggs found in routine diagnostic stool samples. We provide first T. solium transcriptome data, which show extremely high mitochondrial DNA (mtDNA) transcript counts that can be used for subspecies identification. “Mail order” RNA-sequencing can be administered by health personnel equipped with basic laboratory tools such as a microscope, a Bunsen burner, and access to an international post office for shipment of samples to a next generation sequencing facility. Our suggested workflow combines traditional stool microscopy, RNA-extraction from single Taenia eggs with mitochondrial RNA-sequencing, followed by bioinformatic processing with a basic laptop computer. The workflow could help to better target preventive healthcare measures and improve diagnostic specificity in individual patients based on incidental findings of Taenia ssp. eggs in diagnostic laboratories with limited resources.