Project description:Plasmids are extrachromosomal genetic elements commonly found in bacteria. Plasmids are known to fuel bacterial evolution through horizontal gene transfer (HGT), but recent analyses indicate that they can also promote intragenomic adaptations. However, the role of plasmids as catalysts of bacterial evolution beyond HGT remains poorly explored. In this study, we investigate the impact of a widespread conjugative plasmid, pOXA-48, on the evolution of various multidrug-resistant clinical enterobacteria. Combining experimental and within-patient evolution analyses, we unveil that plasmid pOXA-48 promotes bacterial evolution through the transposition of plasmid-encoded IS1 elements. Specifically, IS1-mediated gene inactivations expedite the adaptation rate of clinical strains in vitro and foster within-patient adaptation in the gut. We decipher the mechanism underlying the plasmid-mediated surge in IS1 transposition, revealing a negative feedback loop regulated by the genomic copy number of IS1. Given the overrepresentation of IS elements in bacterial plasmids, our findings propose that plasmid-mediated IS transposition represents a crucial mechanism for swift bacterial adaptation.
Project description:<p>Gut environments harbour dense microbial ecosystems in which plasmids are widely distributed. Plasmids facilitate the exchange of genetic material among microorganisms while enabling the transfer of a diverse array of accessory functions. However, their precise impact on microbial community composition and function remains largely unexplored. Here we identify a prevalent bacterial toxin and a plasmid-encoded resistance mechanism that mediates the interaction between Lactobacilli and Enterococci. This plasmid is widespread across ecosystems, including the rumen and human gut microbiota. Biochemical characterization of the plasmid revealed a defence mechanism against reuterin, a toxin produced by various gut microbes, such as Limosilactobacillus reuteri. Using a targeted metabolomic approach, we find reuterin to be prevalent across rumen ecosystems with impacts on microbial community structure. Enterococcus strains carrying the protective plasmid were isolated and their interactions with L. reuteri, the toxin producer, were studied in vitro. Interestingly, we found that by conferring resistance against reuterin, the plasmid mediates metabolic exchange between the defending and the attacking microbial species, resulting in a beneficial relationship or mutualism. Hence, we reveal here an ecological role for a plasmid-coded defence system in mediating a beneficial interaction. </p>
Project description:We combined Self-Transcribing Active Regulatory Region Sequencing (STARR-seq) with an enrichment step using chromatin immunoprecipitation in a massively parallel reporter assay. We applied this assay, termed ChIP-STARR-seq, to normal (primed) and naive human embryonic stem cells, building up a comprehensive catalogue of functional enhancers. This database record describes the DNA-seq component from isolated plasmids.
Project description:Tn insertion library was used for recipient for conjugative transfer of pESBL, F, and R388 plasmids. For both recipient and the resulting exconjugant libraries, Tn insertion sites were determined by illumina sequencing
Project description:Integrative and conjugative elements (ICEs), a.k.a., conjugative transposons, are mobile genetic elements involved in many biological processes, including the spread of antibiotic resistance. Unlike conjugative plasmids that are extra-chromosomal and replicate autonomously, ICEs are integrated in the chromosome and replicate passively during chromosomal replication. It is generally thought that ICEs do not replicate autonomously. We found that when induced, Bacillus subtilis ICEBs1 replicates as a plasmid. The ICEBs1 origin of transfer (oriT) served as the origin of replication and the conjugal DNA relaxase served as the replication initiation protein. Autonomous replication of ICEBs1 conferred genetic stability to the excised element, but was not required for mating. The B. subtilis helicase PcrA that mediates unwinding and replication of Gram-positive rolling circle replicating plasmids was required for ICEBs1 replication and mating. Nicking of oriT by the relaxase and unwinding by PcrA likely directs transfer of a single-strand of ICEBs1 into recipient cells. This SuperSeries is composed of the SubSeries listed below.
Project description:We generated a collection of 13 plasmids, with each plasmid containing a variant of a CRISPR protospacer targeted by spacer 8 of the E. coli CRISPR-I array. We transformed the plasmids as a pool into delta cas3 E. coli cells expressing all other cas genes constitutively. We then transformed these cells with either an empty vector or a plasmid expressing the Cas3 nuclease. DNA surrounding the protospacers was PCR-amplified and sequenced.
Project description:Conjugative plasmids are the main vehicle for the horizontal spread of antimicrobial resistance (AMR). Although AMR plasmids provide advantages to their hosts under antibiotic pressure, they can also disrupt the cell’s regulatory network, impacting the fitness of their hosts. Despite the importance of plasmid-bacteria interactions on the evolution of AMR, the effects of plasmid carriage on host physiology has remained underexplored, and most studies have focused on model bacteria and plasmids that lack clinical relevance. Here, we analyzed the transcriptional response of 11 clinical enterobacterial strains (2 Escherichia coli, 1 Citrobacter freundii and 8 Klebsiella spp.) and the laboratory-adapted E. coli MG1655 to carriage of pOXA-48, one of the most widely spread carbapenem-resistance plasmids. Our analyses revealed that pOXA-48 produces variable responses on their hosts, but commonly affects processes related to metabolism, transport, response to stimulus, cellular organization and motility. More notably, the presence of pOXA-48 caused an increase in the expression of a small chromosomal operon of unknown function in Klebsiella spp. and C. freundii, which is not present in E. coli. Phylogenetic analysis suggested that this operon has been horizontally mobilized across different Proteobacteria species. We demonstrate that a pOXA-48-encoded LysR transcriptional regulator controls the expression of the operon in Klebsiella spp. and C. freundii. In summary, our results highlight a crosstalk between pOXA-48 and the chromosome of its natural hosts.