Project description:The recognition of modified histones by “reader” proteins constitutes a key mechanism regulating gene expression in the chromatin context. Compared with the great variety of readers for histone methylation, few protein modules that recognize histone acetylation are known. Here we show that the evolutionarily conserved YEATS domains constitute a novel family of acetyllysine readers. The human AF9 YEATS domain binds strongly to histone H3K9 acetylation and, to a lesser extent, H3K27 and H3K18 acetylation. Crystal structural studies revealed that AF9 YEATS adopts an eight-stranded immunoglobin fold and utilizes a serine-lined aromatic “sandwiching” cage for acetyllysine readout, representing a novel recognition mechanism that is distinct from that of known acetyllysine readers. Histone acetylation recognition by AF9 is important for the chromatin recruitment of the H3K79 methyltransferase DOT1L. Together, our studies identify the YEATS domain as a novel acetyllysine-binding module, thereby establishing the first direct link between histone acetylation and DOTL1-mediated H3K79 methylation in transcription control. ChIP-seq analysis of AF9, H3K79me3, H3K9ac in Hela cells and H3K79me3 in Hela AF9 knockdown and Hela Dot1L knockdown cells.
Project description:DNA methylation (5mC) plays important roles in epigenetic regulation of genome function, and recently the TET1-3 hydroxylases have been found to oxidize 5mC to hydroxymethylcytosine (5hmC), formylcytosine (5fC), and carboxylcytosine (5caC) in DNA. These derivatives have a role in demethylation of DNA but in addition may have epigenetic signaling functions in their own right. A recent study identified proteins with preferential binding to 5-methylcytosine (5mC) and its oxidized forms where readers for 5mC and 5hmC (5-hydroxymethylcytosine) showed little overlap while further oxidation forms enriched for repair proteins and transcription regulators. We extend this study by using promoter sequences as baits and compare protein binding patterns to unmodified or modified cytosine containing DNA using mouse embryonic stem cell (mESCs) extracts. The dataset contains 3 biological replicates each of mouse ES cell nuclear proteins binding to Pax6 and FGF15 promoter sequences containing different modified forms of cytosine. Data analysis: Mass spectrometric data were processed using Proteome Discoverer v1.3 and searched against a mammalian entries in Uniprot 2011.09 using Mascot v2.3 with the following parameters: Enzyme - trypsin; max 1 missed cleavage; Precursor Mass Tolerance - 10 ppm; Fragment Mass Tolerance - 0.6 Da; Dynamic Modification - Oxidation (M); Static Modification - Carbamidomethyl at C.
Project description:The recognition of modified histones by “reader” proteins constitutes a key mechanism regulating gene expression in the chromatin context. Compared with the great variety of readers for histone methylation, few protein modules that recognize histone acetylation are known. Here we show that the evolutionarily conserved YEATS domains constitute a novel family of acetyllysine readers. The human AF9 YEATS domain binds strongly to histone H3K9 acetylation and, to a lesser extent, H3K27 and H3K18 acetylation. Crystal structural studies revealed that AF9 YEATS adopts an eight-stranded immunoglobin fold and utilizes a serine-lined aromatic “sandwiching” cage for acetyllysine readout, representing a novel recognition mechanism that is distinct from that of known acetyllysine readers. Histone acetylation recognition by AF9 is important for the chromatin recruitment of the H3K79 methyltransferase DOT1L. Together, our studies identify the YEATS domain as a novel acetyllysine-binding module, thereby establishing the first direct link between histone acetylation and DOTL1-mediated H3K79 methylation in transcription control.
Project description:Post-translational modifications of histones determines cell lineage- or signal-specific gene expression. Depending on the type and combination of modifications, histones bind to functionally distinct effector proteins ('readers') that control gene activation or silencing. The current pharmacological modulation of the epigenome aims to control gene expression by regulation of the enzymes that catalyze post-translational histone modifications. Here we present a novel pharmacological approach that targets gene expression by interfering with the function of histone ?readers?. We describe the impact of a synthetic compound that selectively occupies the acetylated histone-binding pocket of the Bromodomain and Extra Terminal domain (BET) family of proteins and prevents their interaction with acetylated histones. The bromodomain blocking compound suppresses the expression of a specific subset of key inflammatory genes in activated macrophages and confers protection against LPS-induced septic shock in vivo. Our findings suggest that small molecules specifically targeting histone 'readers' can serve as a new generation of drugs to treat immune diseases. Microarray, ChIP-qPCR and ChIP-seq examination of control, 1H LPS stimulated bone-marrow-derived macrophages in the presence/absence of acetylated histone mimic in mouse.
Project description:Deoxyuridine (dU) in DNA can result from deamination of cytosine and dUMP misincorporation. The easy single-nucleotide resolution assay for dU are crucial to understanding its role in genome. Herein, we present a new concept of “base substitution” for accurate single-nucleotide resolution profiling of dU. The method termed AI-Seq (Artificial Incorporation of a modified nucleobase for sequencing) was developed using artificial cytosine (N3-C) to replace dU. After the artificial base construction, dU can read as cytosine during polymerase chain reaction assay. AI-seq was validated on synthetic DNA and then applied to the genome of HEK293T cell line. Collectively, the “base substitution” provides a novel approach for generating comprehensive information about the distribution of dU and can be potentially adapted to detect other epigenetic modifications.
Project description:5-methylcytosine (5mC), the predominant epigenetic modification on DNA, plays critical roles in mammalian development and is dysregulated in various human pathologies. In mammals, the TET family of dioxygenases can oxidize 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC) in a stepwise manner. 5fC and 5caC are selectively recognized and excised by mammalian thymine DNA glycosylase (TDG), and restored to normal cytosine through base excision repair (BER). Once 5mC/5hmC is converted to 5fC and/or 5caC, the modified cytosine is committed to demethylation through BER. Thus 5fC and 5caC most likely mark active demethylation in the mammalian genome. Here we introduce a genome-wide approach to obtain single-base resolution maps of 5fC and 5caC, respectively. We show that, in mouse embryonic stem cells (mESCs), 5fC and 5caC are preferentially generated at highly hypomethylated regions and more active enhancers. Moreover, 5caC-marked regions are characterized by the lowest methylation and highest enhancer activity among all modification sites associated with 5hmC, 5fC and 5caC, and are enriched adjacent to pluripotency transcription factor (TF)-binding motifs. These observations, together with the surprising lack of overlap between 5fC and 5caC sites, highlight a gradient of Tet-mediated 5mC oxidation activity at regulatory elements in tuning epigenetic dynamics11. DNA immunoprecipitation coupled chemical-modification assisted bisulfite sequencing (DIP-CAB-Seq) for Tdg fl/fl and Tdg-/- mESCs
Project description:The heptarepeats of the C-terminal domain of Pol II are extensively modified throughout the transcription cycle. The CTD coordinates RNA synthesis and processing by recruiting transcription regulation factors as well as RNA capping, splicing and 3’end processing factors. The SPOC domain of PHF3 was recently identified as a new CTD reader domain specifically binding to phosphorylated Serine-2 residues in adjacent CTD repeats. Here, we establish the SPOC domains of the human proteins DIDO, SHARP and RBM15 as phosphoserine binding modules that can act as CTD readers but also recognize other phosphorylated binding partners. We report the crystal structure of SHARP (SPEN) SPOC-CTD and identify the molecular determinants for its specific binding to phosphorylated Serine-5. PHF3 and DIDO SPOC domains preferentially interact with the Pol II elongation complex, while RBM15 and SHARP SPOC domains engage with the m6A writer and reader proteins. Our findings establish the SPOC domain as a major interface between the transcription machinery and regulators of transcription and co-transcriptional processes. Here we include ChIP seq data from SHARP and PHF3 with and without the SPOC domain.