Project description:Gastric cancer (GC) represents a notable amount of morbidity and mortality worldwide. Understanding the molecular basis of CG will offer insight into its pathogenesis in an attempt to identify new molecular biomarkers to early diagnose this disease. Therefore, studies involving small non-coding RNAs have been widely explored. Among these, PIWI-interacting RNAs (piRNAs) are an emergent class that can play important roles in carcinogenesis. In this study, small-RNA sequencing was used to identify the global piRNAs expression profile (piRNome) of gastric cancer patients. We found 698 piRNAs in gastric tissues, 14 of which were differentially expressed (DE) between gastric cancer (GC), adjacent to gastric cancer (ADJ), and non-cancer tissues (NC). Moreover, three of these DE piRNAs (piR-48966*, piR-49145, piR-31335*) were differently expressed in both GC and ADJ samples in comparison to NC samples, indicating that the tumor-adjacent tissue was molecularly altered and should not be considered as a normal control. These three piRNAs are potential risk biomarkers for GC, especially piR-48966* and piR-31335*. Furthermore, an in-silico search for mRNAs targeted by the differentially expressed piRNAs revealed that these piRNAs may regulate genes that participate in cancer-related pathways, suggesting that these small non-coding RNAs may be directly and indirectly involved in gastric carcinogenesis.
Project description:Piwi-interacting RNAs (piRNAs), whose role in germline maintenance has been established, are now also being classified as post-transcriptional regulators of gene expression in somatic cells. PIWI proteins, central to piRNA biogenesis, have been identified as genetic and epigenetic regulators of gene expression. piRNAs/PIWIs have emerged as potential biomarkers for cancer but their relevance to breast cancer has not been comprehensively studied. piRNAs and mRNAs were profiled from normal and breast tumor tissues using next generation sequencing and Agilent platforms, respectively. Gene targets for differentially expressed piRNAs were identified from mRNA expression dataset. piRNAs and PIWI genes were independently assessed for their prognostic significance (outcomes: Overall Survival, OS and Recurrence Free Survival, RFS). We discovered eight piRNAs as novel independent prognostic markers and their association with OS was confirmed in an external dataset (The Cancer Genome Atlas). Further, PIWIL3 and PIWIL4 genes showed prognostic relevance. 306 gene targets exhibited reciprocal relationship with piRNA expression. Cancer cell pathways such as apoptosis and cell signaling were the key Gene Ontology terms associated with the regulated gene targets. Overall, we have captured the entire cascade of events in a dysregulated piRNA pathway and have identified novel markers for breast cancer prognostication.
Project description:PIWI-interacting RNAs (piRNAs) are a class of non-coding RNAs initially thought to be restricted exclusively to germline cells. In recent years, accumulating evidence has demonstrated that piRNAs are actually expressed in pluripotent, neural, cardiac and even cancer cells. However, controversy remains around the existence and function of somatic piRNAs. Using small RNA-seq samples from H9 pluripotent cells differentiated to mesoderm progenitors and cardiomyocytes we identified the expression of 447 piRNA transcripts, of which 241 were detected in pluripotency, 218 in mesoderm and 171 in cardiac cells. The majority of them originated from the sense strand of protein coding and lncRNAs genes in all stages of differentiation, though no evidences of amplification loop (ping-pong) were found. Genes hosting piRNA transcripts in cardiac samples were related to critical biological processes in the heart, like contraction and cardiac muscle development. Our results indicate that these piRNAs might have a role in fine-tuning the expression of genes involved in differentiation of pluripotent cells to cardiomyocytes.
Project description:PIWI-interacting RNAs (piRNAs) are emerging players in cancer genomics. Originally described in the germline, there are over 20,000 piRNA genes in the human genome. In contrast to microRNAs, piRNAs interact with PIWI proteins, another member of the Argonaute family, and function primarily in the nucleus. There, they are involved in the epigenetic silencing of transposable elements in addition to the transcriptional regulation of genes. It has recently been demonstrated that piRNAs are also expressed across a variety of human somatic tissue types in a tissue-specific manner. An increasing number of studies have shown that aberrant piRNA expression is a signature feature across multiple tumour types; however, their specific tumorigenic functions remain unclear. In this article, we discuss the emerging functional roles of piRNAs in a variety of cancers, and highlight their potential clinical utilities.
Project description:PIWI-interacting RNA (piRNAs), once thought to be mainly functioning in germlines, are now known to play an essential role in somatic and cancerous tissues. Ping-pong cycle initiation and mitochondria-based phased production constitute the core of the piRNA biogenesis and these two processes are well conserved in mammals, including humans. By being involved in DNA methylation, histone marker deposition, mRNA degradation, and protein modification, piRNAs also contribute to carcinogenesis partly due to oncogenic stress-induced piRNA dysregulation. Also, piRNAs play important roles in cancer stemness, drug resistance, and tumor immunology. Results from liquid biopsy analysis of piRNA can be used in both cancer diagnoses and cancer prognoses. A combination of targeting piRNA with other therapeutic strategies could be groundbreaking cancer treatment.
Project description:Numerous factors influence breast cancer (BC) prognosis, thus complicating the prediction of outcome. By identifying biomarkers that would distinguish the cases with poorer response to therapy already at the time of diagnosis, the rate of survival could be improved. Lately, Piwi-interacting RNAs (piRNAs) have been introduced as potential cancer biomarkers, however, due to the recently raised challenges in piRNA annotations, further evaluation of piRNAs' involvement in cancer is required. We performed small RNA sequencing in 227 fresh-frozen breast tissue samples from the Eastern Finnish Kuopio Breast Cancer Project material to study the presence of piRNAs in BC and their associations with the clinicopathological features and outcome of BC patients. We observed the presence of three small RNAs annotated as piRNA database entries (DQ596932, DQ570994, and DQ571955) in our samples. The actual species of these RNAs however remain uncertain. All three small RNAs were upregulated in grade III tumors and DQ596932 additionally in estrogen receptor negative tumors. Furthermore, patients with estrogen receptor positive BC and higher DQ571955 had shorter relapse-free survival and poorer BC-specific survival, thus indicating DQ571955 as a candidate predictive marker for radiotherapy response in estrogen receptor positive BC. DQ596932 showed possible prognostic value in BC, whereas DQ570994 was identified as a candidate predictive marker for tamoxifen and chemotherapy response. These three small RNAs appear as candidate biomarkers for BC, which could after further investigation provide novel approaches for the treatment of therapy resistant BC. Overall, our results indicate that the prevalence of piRNAs in cancer is most likely not as comprehensive as has been previously thought.
Project description:PIWI proteins and their bound PIWI-interacting RNAs (piRNAs) are found in animal germlines and are essential for fertility, but their functions outside of the gonad are not well understood. The cnidarian Hydra is a simple metazoan with well-characterized stem/progenitor cells that provides a unique model for analysis of PIWI function. Here we report that Hydra has two PIWI proteins, Hydra PIWI (Hywi) and Hydra PIWI-like (Hyli), both of which are expressed in all Hydra stem/progenitor cells, but not in terminally differentiated cells. We identified ∼15 million piRNAs associated with Hywi and/or Hyli and found that they exhibit the ping-pong signature of piRNA biogenesis. Hydra PIWI proteins are strictly cytoplasmic and thus likely act as posttranscriptional regulators. To explore this function, we generated a Hydra transcriptome for piRNA mapping. piRNAs map to transposons with a 25- to 35-fold enrichment compared with the abundance of transposon transcripts. By sequencing the small RNAs specific to the interstitial, ectodermal, and endodermal lineages, we found that the targeting of transposons appears to be largely restricted to the interstitial lineage. We also identified putative nontransposon targets of the pathway unique to each lineage. Finally we demonstrate that hywi function is essential in the somatic epithelial lineages. This comprehensive analysis of the PIWI-piRNA pathway in the somatic stem/progenitor cells of a nonbilaterian animal suggests that this pathway originated with broader stem cell functionality.
Project description:To identify the differentially expressed genes in normal gastric mucosa and gastric cancer tissues, we employed the microarray profiling analysis. Genes with greater than 2-fold change and P-value <0.05 were identified as differentially expressed genes. From this dataset, we obtained differentially expressed genes by cluster analysis and enriched GOs was identified by Gene set enrichment analysis (GSEA) analysis, microtubule GO was one of the most enriched GOs, and the gene KIF14 was selected to go on to the next step in the study.
Project description:Cancer is one of the most important reasons of mortality in the world. However, there are several therapeutic platforms to treat patients who suffering from cancer common treatments such as surgery, chemotherapy and etc. The current therapeutic approaches are related to some limitations. Hence, more understanding about molecular mechanisms that involved in cancer particularly in breast cancer pathogenesis, could contribute to provide better therapeutic platforms. Recently, non-coding RNAs such as microRNAs have attracted researchers' attention in the field of cancer due to their functions in gene expression's regulation and functional interactions with other molecules. Interestingly, great advances in next-generation sequencing lead to considering other roles for another non-coding RNAs subgroup called PIWI-interacting RNAs (piRNAs) in addition to their functions in the germline. Novel studies investigated the role of piRNAs in several cancers including lung cancer, hepatocellular carcinoma, gastric cancer, multiple myeloma and colorectal cancer. Hopefully, based on new findings, piRNAs may be a potential biomarker which can be used as a tool to diagnose or treat breast cancer. Thus, this review aimed to discuss the role of piRNAs in breast cancer progression and metastasis as well as its molecular mechanisms.