Project description:Previous studies have documented the diversity of genetic background of methicillin-resistant S. aureus (MRSA) strains associated with healthcare (HA-MRSA), community (CA-MRSA) and livestock (LA-MRSA). The accessory and core-variable genome content of those strains remain largely unknown. To compare the composition of accessory and core-variable genome of Belgian MRSA strains according to host, population setting and genetic background, representative strains of HA- (n=21), CA- (n = 13) and ST398 LA-MRSA (n = 18) were characterized by a DNA-microarray (StaphVar Array) composed of oligonucleotide probes targeting ~400 resistance, adhesion and virulence associated genes.ST398 strains displayed very homogenous hybridization profiles (>94% gene content homology) irrespective of their host origin. This “ST398-specific” genomic profile was not distantly demarked from those of certain human-associated lineages but lacked several virulence- and colonization-associated genes harbored by strains of human origin, such as genes encoding proteases, haemolysins or adhesins. No enterotoxin gene was found among ST398 strains. In conclusion, our findings are consistent with a non-human origin of this ST398 lineage but suggest that it might have the potential to adapt further to the human host.
Project description:Introduction Community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) are increasingly isolated, with USA300-0114 being the predominant clone in the USA. Comparative whole genome sequencing of USA300 isolates collected in 2002, 2003 and 2005 showed a limited number of single nucleotide polymorphisms and regions of difference. This suggests that USA300 has undergone rapid clonal expansion without great genomic diversification. However, whole genome comparison of CA-MRSA has been limited to isolates belonging to USA300. The aim of this study was to compare the genetic repertoire of different CA-MRSA clones with that of HA-MRSA from the USA and Europe through comparative genomic hybridization (CGH) to identify genetic clues that may explain the successful and rapid emergence of CA-MRSA. Materials and Methods Hierarchical clustering based on CGH of 48 MRSA isolates from the community and nosocomial infections from Europe and the USA revealed dispersed clustering of the 19 CA-MRSA isolates. This means that these 19 CA-MRSA isolates do not share a unique genetic make-up. Only the PVL genes were commonly present in all CA-MRSA isolates. However, 10 genes were variably present among 14 USA300 isolates. Most of these genes were present on mobile elements. Conclusion The genetic variation present among the 14 USA300 isolates is remarkable considering the fact that the isolates were recovered within one month and originated from a confined geographic area, suggesting continuous evolution of this clone. Data is also available from <ahref=http://bugs.sgul.ac.uk/E-BUGS-108 target=_blank>BuG@Sbase</a>
Project description:The success of community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) as pathogens is due to a combination of antibiotic resistance with high virulence. However, evolution of the exceptional virulence potential of CA-MRSA is not understood. Our previous study indicated that differential gene expression contributes substantially to this process. Thus, we here investigated the role of the pivotal virulence gene regulatory system agr in the most prevalent CA-MRSA strain USA300. Using a mouse subcutaneous infection model, we show that agr is essential for the development of CA-MRSA skin infections, the most frequent manifestation of disease caused by CA-MRSA. Furthermore, genome-wide analysis of gene expression revealed significant differences in agr-dependent virulence gene regulation between CA-MRSA, HA-MRSA, and laboratory strains. Our findings demonstrate that agr functionality is critical for CA-MRSA disease and indicate that an adaptation of the agr regulon to optimize expression of a broad set of virulence determinants may have contributed to the evolution of exceptionally pronounced virulence of CA-MRSA strains. Keywords: wild type vs mutant
Project description:Methicillin-resistant Staphylococcus aureus (MRSA) is a major threat to human health. Rather than depend on creating new antibiotics (to which bacteria will eventually become resistant), we are employing antibiotic adjuvants that potentiate existing antibiotics. Based on our previous work, loratadine, the FDA-approvide antihistamine, effectively potentiates cell-wall active antibiotics in multiple strains of MRSA. Furthermore, loratadine and oxacillin helped disrupt preformed biofilms and stop them from initially forming in vitro. To gain biological insight into how this potentiation and biofilm inhibition occurs, we used RNA-seq on treated MRSA 43300 cultures to examine antibiotic adjuvant affects transcritome-wide.
Project description:The success of community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) as pathogens is due to a combination of antibiotic resistance with high virulence. However, evolution of the exceptional virulence potential of CA-MRSA is not understood. Our previous study indicated that differential gene expression contributes substantially to this process. Thus, we here investigated the role of the pivotal virulence gene regulatory system agr in the most prevalent CA-MRSA strain USA300. Using a mouse subcutaneous infection model, we show that agr is essential for the development of CA-MRSA skin infections, the most frequent manifestation of disease caused by CA-MRSA. Furthermore, genome-wide analysis of gene expression revealed significant differences in agr-dependent virulence gene regulation between CA-MRSA, HA-MRSA, and laboratory strains. Our findings demonstrate that agr functionality is critical for CA-MRSA disease and indicate that an adaptation of the agr regulon to optimize expression of a broad set of virulence determinants may have contributed to the evolution of exceptionally pronounced virulence of CA-MRSA strains. Keywords: wild type vs mutant Wild type vs mutant agr strains.
Project description:Panton-valentine leukocidin (PVL) has been linked to worldwide emergence of community-associated methicillin resistant Staphylococcus aureus (CA-MRSA) -- its role in virulence in unclear. Here we show that PVL had no effect on global gene expression of prominent CA-MRSA strains nor did it affect bacterial clearance from lungs, spleen and kidneys in a highly discriminatory rabbit bacteremia model. These findings negate a large body of epidemiological research that implicated PVL in CA-MRSA virulence. Keywords: mutant vs wild type in 2 different growth phases grown in 2 different medias
Project description:Hemolysins are lytic exotoxins expressed in most strains of S. aureus, but hemolytic activity varies between strains. We have previously reported several novel anti-virulence compounds that disrupt the S. aureus transcriptome, including hemolysin gene expression. This report delves further into our two lead compounds, loratadine and a structurally related brominated carbazole, and their effects on hemolysin production in methicillin-resistant S. aureus (MRSA). To gain understanding into how these compounds affect hemolysis, we analyzed these exotoxins at the DNA, RNA, and protein level after in vitro treatment. While lysis of red blood cells varied between strains, DNA sequence variation did not account for it. We hypothesized that our compounds would modulate gene expression of multiple hemolysins in two hospital-acquired strains of MRSA, both with staphylococcal cassette chromosome mec (SCCmec) type II. RNA-seq analysis of differential gene expression in untreated and compound-treated cultures revealed hundreds of differentially expressed genes, with a significant enrichment in genes involved in hemolysis. The brominated carbazole and loratadine both displayed the ability to reduce hemolysis in strain 43300 but displayed differential activity in strain USA100. These results corroborate gene expression studies as well as western blots of alpha hemolysin. Together, this work suggests that small molecules may alter exotoxin production in MRSA but that the directionality and/or magnitude of the difference are likely strain dependent.
Project description:Panton-valentine leukocidin (PVL) has been linked to worldwide emergence of community-associated methicillin resistant Staphylococcus aureus (CA-MRSA) -- its role in virulence in unclear. Here we show that PVL had no effect on global gene expression of prominent CA-MRSA strains nor did it affect bacterial clearance from lungs, spleen and kidneys in a highly discriminatory rabbit bacteremia model. These findings negate a large body of epidemiological research that implicated PVL in CA-MRSA virulence. Keywords: mutant vs wild type in 2 different growth phases grown in 2 different medias Wild type USA 300 (strain SF8300), wild type USA 400 (strain MW2) were compared against their respective PVL isogenic knock out strains. Strains were compared at both mid-exponential and stationary phase and grown in both TSB and CCY to determine if PVL plays a role in gene regulation under these conditions.