Project description:Gene expression levels of newly synthetic triploid wheat (ABD), its chromosome-doubled hexaploid (AABBDD), stable synthetic hexaploid (AABBDD), and their parents, Triticum turgidum (accession KU124, AABB) and Aegilops tauschii (accession KU2074, DD) were compared to understand genome-wide change of gene expressions during the course of amphidiploidization and genome stabilization. Stable synthetic hexaploid which were maintained through self-pollinations for 13 generations using the same combinations of the parents for production of synthetic common wheat.
Project description:Alloplasmic lines provide a unique tool to study the nucleo-cytoplasmic interactions. Alloplasmic lines T183 and T195 were developed through the introgression of the cytoplasm from Aegilops uniaristata (T183) and Aegilops squarrosa (T195) in the nuclear background of Triticum aestivum cv. Chris. Alloplasmic line TH237 was produced introgressing the Hordeum chilense accession H7 cytoplasm into the nuclear background of Triticum aestivum accession T20. Fifty seeds for each sample in pots of 11 cm diameter and grown in controlled conditions under 600µE m-2 s–1 high light intensity in a daily regime of 12 h light at 22°C and 12 h darkness at 15°C. Plants were bulked from each pot and three biological replicate used for the transcriptomics Fully expanded second leaves were collected two weeks from sowing in the middle of the light period and used for transcriptomic analysis. ****PLEXdb (http://www.plexdb.org) has submitted this series at GEO on behalf of the original contributor, Cristina Crosatti. The equivalent experiment is TA49 at PLEXdb.
Project description:Nucleotide sequence accession number
The nucleotide sequence of Escherichia virus EcS1 was
deposited in the DDBJ database under accession number
LC371242.
Project description:Aegilops tauschii is the donor of the wheat D subgenome and an important genetic resource for wheat. The assembly of Ae. tauschii acc. AL8/78 reference genome sequence Aet v4.0 was therefore an important milestone for wheat biology and breeding. The combination of the > 4.2 Gb size of the Ae. tauschii genome and > 84% of recently evolved repeated sequences make sequencing this genome challenging. Here, we report further advances in the development of the Ae. tauschii acc. AL8/78 genome sequence. Two new genome-wide optical maps were constructed and employed in the revision of pseudomolecules and estimations of gap lengths. Gaps were closed with contigs of single-molecule Pacific Biosciences reads. The number of gaps in Aet v5.0 decreased by 38,899 compared to Aet v4.0. Transposable elements and protein-coding genes were reannotated. The number of high-confidence genes was reduced from 38,886 in Aet v4.0 to 32,980 in Aet v5.0. A nonredundant set of 478 biologically important genes including many of known function in wheat was manually annotated. Sixty-one microRNA precursor and 60 phasiRNA loci were discovered, annotated, and their expression was characterized. Also characterized was expression of other small RNAs, such as hc-siRNAs and tRFs. This upgraded genome sequence will facilitate the use of Ae. tauschii in wheat breeding and biological research. Aegilops tauschii is the donor of the wheat D subgenome and an important genetic resource for wheat. The assembly of Ae. tauschii acc. AL8/78 reference genome sequence Aet v4.0 was therefore an important milestone for wheat biology and breeding. The combination of the > 4.2 Gb size of the Ae. tauschii genome and > 84% of recently evolved repeated sequences make sequencing this genome challenging. Here, we report further advances in the development of the Ae. tauschii acc. AL8/78 genome sequence. Two new genome-wide optical maps were constructed and employed in the revision of pseudomolecules and estimations of gap lengths. Gaps were closed with contigs of single-molecule Pacific Biosciences reads. The number of gaps in Aet v5.0 decreased by 38,899 compared to Aet v4.0. Transposable elements and protein-coding genes were reannotated. The number of high-confidence genes was reduced from 38,886 in Aet v4.0 to 32,980 in Aet v5.0. A nonredundant set of 478 biologically important genes including many of known function in wheat was manually annotated. Sixty-one microRNA precursor and 60 phasiRNA loci were discovered, annotated, and their expression was characterized. Also characterized was expression of other small RNAs, such as hc-siRNAs and tRFs. This upgraded genome sequence will facilitate the use of Ae. tauschii in wheat breeding and biological research. Aegilops tauschii is the donor of the wheat D subgenome and an important genetic resource for wheat. The assembly of Ae. tauschii acc. AL8/78 reference genome sequence Aet v4.0 was therefore an important milestone for wheat biology and breeding. The combination of the > 4.2 Gb size of the Ae. tauschii genome and > 84% of recently evolved repeated sequences make sequencing this genome challenging. Here, we report further advances in the development of the Ae. tauschii acc. AL8/78 genome sequence. Two new genome-wide optical maps were constructed and employed in the revision of pseudomolecules and estimations of gap lengths. Gaps were closed with contigs of single-molecule Pacific Biosciences reads. The number of gaps in Aet v5.0 decreased by 38,899 compared to Aet v4.0. Transposable elements and protein-coding genes were reannotated. The number of high-confidence genes was reduced from 38,886 in Aet v4.0 to 32,980 in Aet v5.0. A nonredundant set of 478 biologically important genes including many of known function in wheat was manually annotated. Sixty-one microRNA precursor and 60 phasiRNA loci were discovered, annotated, and their expression was characterized. Also characterized was expression of other small RNAs, such as hc-siRNAs and tRFs. This upgraded genome sequence will facilitate the use of Ae. tauschii in wheat breeding and biological research.
Project description:We report the transcriptomic comparisions between key processes required for various stages of fungal carnivory in nematode-trapping fungus Arthrobotrys oligospora when induced with nematodes. The reference assembly used for remapping is A. oligospora TWF154 (GenBank assembly accession: GCA_004768765.1)