Project description:Frost tolerance is the main component of winter-hardiness. To express this trait, plants have to sense low temperature, and respond by activating the process of cold acclimation. The molecular mechanisms of this acclimation have not been fully understood in the agronomically important group of forage grasses, including Lolium-Festuca species. Herein, the introgression forms of L. multiflorum/F. arundinacea distinct with respect to their frost tolerance, were used as models for the comprehensive, proteomic and physiological, research to recognize the crucial components of cold acclimation in forage grasses. The obtained results stressed the importance of photosynthetic performance under acclimation to low temperature. The stable level of photochemical processes after three weeks of cold acclimation in the introgression form with a higher level of frost tolerance, combined simultaneously with the stable level of CO2 assimilation after that period, despite decreased stomatal conductance, indicated the capacity for that form to acclimate its photosynthetic apparatus to low temperature. This phenomenon was driven by the Calvin cycle efficiency, associated with revealed here accumulation profiles and activities of chloroplastic aldolase. The capacity to acclimate the photosynthetic machinery to cold could be one of the most crucial components of forage grass metabolism to improve frost tolerance.
Project description:We have employed whole genome microarray expression profiling as a discovery platform to identify genes to alter the transcript accumulation levels in grass-clump dwarf lines, which are synthetic hexaploid lines from triploid hybrids crossed between tetraploid wheat (Triticum turgidum ssp. durum cv. Langdon or T. turgidum ssp. carthlicum) and diploid wheat progenitor Aegilops tauschii (KU2025). No up-regulation of defense-related genes was observed under the normal temperature, and down-regulation of wheat APETALA1-like MADS-box genes, considered to act as flowering promoters, was found in the grass-clump dwarf lines. Together with small RNA sequencing analysis of the grass-clump dwarf line, unusual expression of the miR156/SPLs module could explain the grass-clump dwarf phenotype.
Project description:We have employed whole genome microarray expression profiling as a discovery platform to identify genes to alter the transcript accumulation levels in grass-clump dwarf lines, which are synthetic hexaploid lines from triploid hybrids crossed between tetraploid wheat (Triticum turgidum ssp. durum cv. Langdon or T. turgidum ssp. carthlicum) and diploid wheat progenitor Aegilops tauschii (KU2025). No up-regulation of defense-related genes was observed under the normal temperature, and down-regulation of wheat APETALA1-like MADS-box genes, considered to act as flowering promoters, was found in the grass-clump dwarf lines. Together with small RNA sequencing analysis of the grass-clump dwarf line, unusual expression of the miR156/SPLs module could explain the grass-clump dwarf phenotype. Expression patterns were compared between the three synthetic hexaploid lines showing the wild-type phenotype (as a reference) and grass-clump dwarf. Total RNA samples were isolated from crown tissues of the plants grown at 24°C under long day (18-h light and 6-h dark) condition for 8 weeks. Two independent experiments were conducted in each exprement.
Project description:Physiological and transcriptional responses to drought stress and recovery in a drought-tolerant fescue wild grass (Festuca ovina Poaceae)
Project description:We have employed whole genome microarray expression profiling as a discovery platform to identify genes to alter the transcript accumulation levels in a grass-clump dwarf line, which is a synthetic hexaploid line from triploid hybrids crossed between tetraploid wheat (Triticum turgidum ssp. durum cv. Langdon) and a diploid wheat relative Aegilops umbellulata (KU-4052). Up-regulation of metabolic and catabolic processes-related genes for cell wall-associated molecules was observed, and down-regulation of wheat APETALA1-like MADS-box genes, considered to act as flowering promoters, was found in the grass-clump dwarf line. Unusual expression of the branching-related SPLs and flowering time regulation-related MADS-box genes could explain the grass-clump dwarf phenotype.
Project description:Drought is a major limiting factor in foraging grass yield and quality. Medicago ruthenica is a high-quality forage legume with drought resistance, cold tolerance, and strong adaptability. In this study, we integrated transcriptome, small RNA, and degradome sequencing in identifying drought response genes, miRNAs, and key miRNA-target pairs in M. ruthenica under drought and re-watering treatment conditions. A total of 3,905 genes and 50 miRNAs (45 conserved and 5 novel miRNAs) were significantly differentially expressed between the re-watering (RW) vs. drought (DS) comparison and control (CK) groups. The degradome sequencing analysis revealed that 348 miRNAs (37 novel and 311 conserved miRNAs) were identified with 6,912 target transcripts, forming 11,390 miRNA-target pairs in the three libraries. There were 38 differentially expressed targets from 16 miRNAs in DS vs. CK, 31 from 11 miRNAs in DS vs. RW, and 6 from 3 miRNAs in RW vs. CK; 21,18, and 3 miRNA-target gene pairs showed reverse expression patterns in DS vs. CK, DS vs. RW, and RW vs. CK comparison groups, respectively. These findings provide valuable information for further functional characterization of genes and miRNAs in response to abiotic stress, in general, and drought stress in M. ruthenica, and potentially contribute to drought resistance breeding of forage in the future.
Project description:Beef represents a major diet component and one of the major sources of protein in human. The beef industry in the United States is currently undergoing changes and is facing increased demands especially for natural grass-fed beef. The grass-fed beef obtained their nutrients directly from pastures, which contained limited assimilable energy but abundant amount of fiber. On the contrary, the grain-fed steers received a grain-based regime that served as an efficient source of high-digestible energy. Lately, ruminant animals have been accused to be a substantial contributor for the green house effect. Therefore, the concerns from environmentalism, animal welfare and public health have driven consumers to choose grass-fed beef. Rumen is one of the key workshops to digest forage constituting a critical step to supply enough nutrients for animals’ growth and production. We hypothesize that rumen may function differently in grass- and grain-fed regimes. The objective of this study was to find the differentially expressed genes in the ruminal wall of grass-fed and grain-fed steers, and then explore the potential biopathways. In this study, the RNA Sequencing (RNA-Seq) method was used to measure the gene expression level in the ruminal wall. The total number of reads per sample ranged from 24,697,373 to 36,714,704. The analysis detected 342 differentially expressed genes between ruminal wall samples of animals raised under different regimens. The Fisher’s exact test performed in the Ingenuity Pathway Analysis (IPA) software found 16 significant molecular networks. Additionally, 13 significantly enriched pathways were identified, most of which were related to cell development and biosynthesis. Our analysis demonstrated that most of the pathways enriched with the differentially expressed genes were related to cell development and biosynthesis. Our results provided valuable insights into the molecular mechanisms resulting in the phenotype difference between grass-fed and grain-fed cattle.
2015-03-31 | GSE63550 | GEO
Project description:Forage and turf grasses Festuca, Lolium and their hybrids transcriptome
Project description:Genomic imbalance caused by varying the dosage of individual chromosomes or chromosomal segments (aneuploidy) has more detrimental effects than altering the dosage of complete chromosome sets (ploidy). Previous analysis on RNA-sequencing data of varied dosage of various chromosomal regions in maize (Zea mays) revealed global modulation of gene expression both on the varied chromosome (cis) and the remainder of the genome (trans). Dysregulation of microRNA (miRNA) dosage has been reported to have profound deleterious effects in many species. miRNAs are preferentially retained as duplicates following whole-genome duplication in grass species and are postulated to be dosage-sensitive. However, little is known regarding the role of miRNAs under genomic imbalance. We examined the impact of increased and/or decreased dosage of 1 interstitial and 19 distal chromosomal regions in concert with a whole-genome ploidy series of haploid, diploid, triploid, and tetraploid via small RNA-sequencing of diploid and haploid maize mature leaf tissue to investigate the impact of aneuploidy and polyploidy on expression of miRNAs. In general, cis miRNAs in aneuploids present a predominant gene-dosage effect, whereas trans miRNAs trend toward the inverse level, although other types of responses including dosage compensation, increased effect, and decreased effect also occur. Significant correlations between expression levels of miRNAs and their targets were identified in aneuploids, indicating the regulatory role of miRNAs on gene expression triggered by genomic imbalance. The findings provide novel insights into understanding of gene balance from the aspect of the function of miRNAs.