Project description:This project aimed to explore the microbial chemical ecology of a consortium derived from a water kefir fermentation through the integration of directed culturomics, compositional metagenomics and the identification of key metabolites with biological potential, through untargeted metabolomics.
Project description:We got insights into the B. bifidum PRL2010 genes whose expression resulted to be affected when bacterial cells were cultivated on kefir and kefiran as the unique carbon source. In order to exploit the transcriptome of PRL2010 grown on kefir and hefiran we performed global transcription profiling using PRL2010 microarrays hybridized with cDNA from the RNA samples of B. bifidum PRL2010 cultivated on these substrates. We isolated mRNA from B. bifidum PRL2010 cells collected from a culture of kefir grains and from PRL2010 cultivated on MRS plus kefiran at upon 12 hours following inoculation. Microarray analysis was performed with an oligonucleotide array based on the B. bifidum PRL2010 genome: a total of 8,130 oligonucleotide probes of 60bp in length were designed on 1707 ORFs using eArray5.0 (Agilent Technologies). 5 Oligos were designed for each gene on a 4x44k Agilent Microarrays(Agilent Technologies, Santa Clara, CA, USA). Replicates were distributed on the chip at random, non-adjacent positions.
Project description:We got insights into the B. bifidum PRL2010 genes whose expression resulted to be affected when bacterial cells were cultivated on kefir and kefiran as the unique carbon source.
Project description:Monitoring microbial communities can aid in understanding the state of these habitats. Environmental DNA (eDNA) techniques provide efficient and comprehensive monitoring by capturing broader diversity. Besides structural profiling, eDNA methods allow the study of functional profiles, encompassing the genes within the microbial community. In this study, three methodologies were compared for functional profiling of microbial communities in estuarine and coastal sites in the Bay of Biscay. The methodologies included inference from 16S metabarcoding data using Tax4Fun, GeoChip microarrays, and shotgun metagenomics.
Project description:Next-Generation-Sequencing (NGS) technologies have led to important improvement in the detection of new or unrecognized infective agents, related to infectious diseases. In this context, NGS high-throughput technology can be used to achieve a comprehensive and unbiased sequencing of the nucleic acids present in a clinical sample (i.e. tissues). Metagenomic shotgun sequencing has emerged as powerful high-throughput approaches to analyze and survey microbial composition in the field of infectious diseases. By directly sequencing millions of nucleic acid molecules in a sample and matching the sequences to those available in databases, pathogens of an infectious disease can be inferred. Despite the large amount of metagenomic shotgun data produced, there is a lack of a comprehensive and easy-use pipeline for data analysis that avoid annoying and complicated bioinformatics steps. Here we present HOME-BIO, a modular and exhaustive pipeline for analysis of biological entity estimation, specific designed for shotgun sequenced clinical samples. HOME-BIO analysis provides comprehensive taxonomy classification by querying different source database and carry out main steps in metagenomic investigation. HOME-BIO is a powerful tool in the hand of biologist without computational experience, which are focused on metagenomic analysis. Its easy-to-use intrinsic characteristic allows users to simply import raw sequenced reads file and obtain taxonomy profile of their samples.
Project description:Next-Generation-Sequencing (NGS) technologies have led to important improvement in the detection of new or unrecognized infective agents, related to infectious diseases. In this context, NGS high-throughput technology can be used to achieve a comprehensive and unbiased sequencing of the nucleic acids present in a clinical sample (i.e. tissues). Metagenomic shotgun sequencing has emerged as powerful high-throughput approaches to analyze and survey microbial composition in the field of infectious diseases. By directly sequencing millions of nucleic acid molecules in a sample and matching the sequences to those available in databases, pathogens of an infectious disease can be inferred. Despite the large amount of metagenomic shotgun data produced, there is a lack of a comprehensive and easy-use pipeline for data analysis that avoid annoying and complicated bioinformatics steps. Here we present HOME-BIO, a modular and exhaustive pipeline for analysis of biological entity estimation, specific designed for shotgun sequenced clinical samples. HOME-BIO analysis provides comprehensive taxonomy classification by querying different source database and carry out main steps in metagenomic investigation. HOME-BIO is a powerful tool in the hand of biologist without computational experience, which are focused on metagenomic analysis. Its easy-to-use intrinsic characteristic allows users to simply import raw sequenced reads file and obtain taxonomy profile of their samples.
Project description:This project aimed to explore the microbial chemical ecology of a consortium derived from a water kefir fermentation through the integration of directed culturomics, compositional metagenomics and the identification of key metabolites with biological potential, through untargeted metabolomics.