Project description:Canine keratinocyte cell line (CPEK, CELLnTEC Advanced Cell Systems, Bern, Switzerland) : Unstimulated control (UC) vs. Samples stimulated by 4µg/mL recombinant human periostin (PO) (R&D Systems, Minneapolis, MN) for 6 or 24 hrs.
2017-01-20 | GSE77041 | GEO
Project description:Analysis of Shigella spp. collected in Bern, Switzerland.
| PRJNA578858 | ENA
Project description:Analysis of Shigella spp. collected in Bern, Switzerland.
Project description:To search for host factors regulating SARS-COV-2 infection, we performed a genome-wide loss-of-function CRISPR/Cas9 screen in haploid human ESCs. The regulators were identified by the quantification of enrichment of their mutant clones within a pooled loss-of-function library upon SARS-COV-2 infection.
Project description:For the assessment of host response dynamics to SARS-CoV and SARS-CoV-2 infections in human airway epithelial cells at ambient temperature corresponding to the upper or lower respiratory tract. We performed a temporal transcriptome analysis on human airway epithelial cell (hAEC) cultures infected with SARS-CoV and SARS-CoV-2, as well as uninfected hAEC cultures, incubated either at 33°C or 37°C. hAEC cultures were harvested at 24, 48 72, 96 hpi and processed for Bulk RNA Barcoding and sequencing (BRB-seq), which allows a rapid and sensitive genome-wide transcriptomic analysis in a highly multiplexed manner. Transcriptome data was obtained from a total of 7 biological donors for pairwise comparisons of SARS-CoV or SARS-CoV-2 virus-infected to unexposed hAEC cultures at respective time points and temperatures.
Project description:The potential protective or pathogenic role of the adaptive immune response to SARS-CoV-2 infection has been vigorously debated. While COVID-19 patients consistently generate a T cell response to SARS-CoV-2 antigens, evidence of significant immune dysregulation in these patients continues to accumulate. In this study, next generation sequencing of the T cell receptor Beta chain (TRB) repertoire was conducted in hospitalized COVID-19 patients to determine if immunogenetic differences of the TRB repertoire contribute to the severity of the disease course. Clustering of highly similar TRB CDR3 amino acid sequences across COVID-19 patients yielded 785 shared TRB sequences. The TRB sequences were then filtered for known associations with common diseases such as EBV and CMV. The remaining sequences were cross-referenced to a publicly accessible dataset that mapped COVID-19 specific TCRs to the SARS-CoV-2 genome. We identified 140 SARS-CoV-2 specific TRB sequences belonging to 119 clusters in our COVID-19 patients. Next, we investigated 92 SARS-CoV-2 specific clusters binding only one peptide target in relation to disease course. Distinct skewing of SARS-CoV-2 specific TRB sequences towards the nonstructural proteins (NSPs) of ORF1a/b of the SARS-CoV-2 genome was observed in clusters with critical disease course when compared to COVID-19 clusters with a severe disease course. These data imply that T-lymphocyte reactivity towards peptides from nonstructural proteins of SARS-CoV-2 may not constitute an effective adaptive immune response and thus may negatively affect disease severity.
Project description:In this study, we tested the efficacy of five commercial probes panels at detecting SARS-CoV-2 genome including panels from Illumina, Twist Bioscience and Arbor Bioscience. To do so, we used 19 patient nasal swab samples broken down into 5 series of 4 samples of equivalent SARS-CoV-2 viral load (cycle threshold (CT): low CT means a high viral load – CT26, CT29, CT32, CT35 and CT36+).
Project description:In this study, we tested the efficacy of five commercial probes panels at detecting SARS-CoV-2 genome including panels from Illumina, Twist Bioscience and Arbor Bioscience. To do so, we used 19 patient nasal swab samples broken down into 5 series of 4 samples of equivalent SARS-CoV-2 viral load (cycle threshold (CT): low CT means a high viral load – CT26, CT29, CT32, CT35 and CT36+).
Project description:In this study, we tested the efficacy of five commercial probes panels at detecting SARS-CoV-2 genome including panels from Illumina, Twist Bioscience and Arbor Bioscience. To do so, we used 19 patient nasal swab samples broken down into 5 series of 4 samples of equivalent SARS-CoV-2 viral load (cycle threshold (CT): low CT means a high viral load – CT26, CT29, CT32, CT35 and CT36+).
Project description:In this study, we tested the efficacy of five commercial probes panels at detecting SARS-CoV-2 genome including panels from Illumina, Twist Bioscience and Arbor Bioscience. To do so, we used 19 patient nasal swab samples broken down into 5 series of 4 samples of equivalent SARS-CoV-2 viral load (cycle threshold (CT): low CT means a high viral load – CT26, CT29, CT32, CT35 and CT36+).