Project description:Community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) is an emerging threat to human health throughout the world. Rodent MRSA pneumonia models mainly focus on the early innate immune responses to MRSA infection. However, the molecular pattern and mechanisms of recovery from MRSA lung infection are largely unknown. In this study, a nonlethal mouse MRSA pneumonia model was employed to investigate events during lung recovery from MRSA infection. We compared lung bacterial clearance, bronchoalveolar lavage fluid (BALF) characterization, lung histology, and gene expression profiling between Day 1 and Day 3 post-MRSA infection. Compared to Day 1 post-infection, bacterial colony counts and both BALF total cell number and protein concentration significantly decreased at Day 3 post-infection. Lung cDNA microarray analysis identified 47 significantly up-regulated and 35 down-regulated genes (p<0.01, 1.5-fold change [up and down]). Changes in eight genes were confirmed by real-time PCR. The pattern of gene expression suggests lung recovery is characterized by enhanced cell division, vascularization, and wound healing and by adjustment in host adaptive immune responses. Collectively, this data helps elucidate the molecular mechanisms of lung recovery after MRSA infection.
Project description:Community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) is an emerging threat to human health throughout the world. Rodent MRSA pneumonia models mainly focus on the early innate immune responses to MRSA infection. However, the molecular pattern and mechanisms of recovery from MRSA lung infection are largely unknown. In this study, a nonlethal mouse MRSA pneumonia model was employed to investigate events during lung recovery from MRSA infection. We compared lung bacterial clearance, bronchoalveolar lavage fluid (BALF) characterization, lung histology, and gene expression profiling between Day 1 and Day 3 post-MRSA infection. Compared to Day 1 post-infection, bacterial colony counts and both BALF total cell number and protein concentration significantly decreased at Day 3 post-infection. Lung cDNA microarray analysis identified 47 significantly up-regulated and 35 down-regulated genes (p<0.01, 1.5-fold change [up and down]). Changes in eight genes were confirmed by real-time PCR. The pattern of gene expression suggests lung recovery is characterized by enhanced cell division, vascularization, and wound healing and by adjustment in host adaptive immune responses. Collectively, this data helps elucidate the molecular mechanisms of lung recovery after MRSA infection. RNA expression analysis was performed using the Illumina MouseRef-8 v2.0 BeadChip (Illumina, San Diego, CA), which provides coverage of approximately 25,700 genes and expressed sequence tags. Four independent mouse lung tissue samples at Day 1 and Day 3 post-MRSA infection were used in this study.
Project description:A leading cause of morbidity and mortality during influenza infection is the development of a secondary bacterial pneumonia, which is appropriately treated with antibiotics. In the absence of a bacterial superinfection, prescribing antibiotics is not indicated but has nevertheless become a common clinical practice for those presenting with a respiratory viral illness. We found that antibiotic use during an antecedent influenza infection impaired the lung innate immunologic defenses toward a secondary challenge with methicillin-resistantStaphylococcus aureus(MRSA). The antibiotics perturbed the gut microbiome causing a fungal dysbiosis that drives an increase in lung eosinophils. We also demonstrate eosinophils, through the release of major basic protein, impair macrophage ability to clear MRSA. Moreover, we provide clinical evidence that eosinophils positively correlate with antibiotic use and worsened outcomes in patients hospitalized for viral infections. Altogether, our work establishes a counterproductive effect of antibiotic treatment during influenza infection that have negative immunologic consequences in the lungs thereby increasing the risk of developing a secondary bacterial infection.
Project description:BACKGROUND: Meticillin-resistant Staphylococcus aureus (MRSA) infections remain important medical and veterinary challenges. The MRSA isolated from dogs and cats typically belong to dominant hospital-associated clones, in the UK mostly EMRSA-15 (CC22 SCCmecIV), suggesting original human-to-animal transmission. Nevertheless, little is known about host-specific genetic variation within the same S. aureus lineage. HYPOTHESIS/OBJECTIVES: To identify host-specific variation amongst MRSA CC22 SCCmecIV by comparing isolates from pets with those from in-contact humans using whole-genome microarray. METHODS: Six pairs of MRSA CC22 SCCmecIV from human carriers (owners and veterinary staff) and their respective infected in-contact pets were compared using a 62-strain whole-genome S. aureus microarray (SAM-62). The presence of putative host-specific genes was subsequently determined in a larger number of human (n = 47) and pet isolates (n = 93) by PCR screening. RESULTS: Variation in mobile genetic elements (MGEs) occurred frequently and appeared largE: The variation found amongst MGEs highlights that genetic adaptation in MRSA continues. However, host-specific MGEs were not detected, which supports the hypothesis that pets may not be natural hosts of MRSA CC22 and emphasizes that rigorous hygiene measures are critical to prevent contamination and infection of dogs and cats. The host specificity of individual heavy-metal resistance genes warrants further investigation into different selection pressures in humans and animals.
Project description:The severe inflammatory response of pulmonary epithelial cells is the main pathological feature of pneumonia caused by methicillin-resistant Staphylococcus aureus (MRSA). Zhenqi granules (ZQ), a compound herbal formula composed of Astragalus membranaceus and Ligustrum lucidum, has potential therapeutic effects on this inflammatory response, but its mechanism of action is still unclear. The study aims to explore the effect and mechanism of ZQ on the inflammatory response induced by establishing an in vitro model of MRSA-infected human pulmonary bronchial epithelial cells (MRSA-BEAS-2B). ZQ (10 mg/mL) had no inhibitory effect on MRSA or its biofilm, but it reduced the levels of LDH and c-di-AMP in MRSA-BEAS-2B cells. The mechanism is attributed to the downregulation of endoplasmic reticulum-related protein pathways, specifically involving a decrease in endoplasmic reticulum stress-related proteins such as STING and ERAdP; a decrease in inflammation pathway-related factors such as NF-ĸB, IFR3, NLRP3, and TLR4; and an increase in the STING antagonist RECON. These effects resulted in a reduction in the proinflammatory cytokines IFN-β, IL-1β, IL-6, and IL-18, thereby inhibiting pulmonary inflammation. ZQ attenuates the inflammatory response of pulmonary epithelial cells by inhibiting c-di-AMP-related endoplasmic reticulum stress during MRSA infection. This study provides a basis for the clinical application of ZQ and improves the development of treatment strategies for pulmonary MRSA infection.
Project description:Methicillin-resistant Staphylococcus aureus (MRSA) is the causative agent of serious hospital- and community-associated infections. Due to the global rise in community-associated MRSA, the respective lineages are increasingly introduced into hospitals. This raises the question whether and, if so, how they adapt to this new environment. The present study was aimed at investigating how MRSA isolates of the USA300 lineage, infamous for causing infections in the general population, have adapted to the hospital environment. To this end, a collection of community- and hospital-associated USA300 isolates was compared by RNA-sequencing. Here we report that merely 460 genes were differentially expressed between these two epidemiologically distinct groups, including genes for virulence factors, oxidative stress responses and the purine, pyrimidine and fatty acid biosynthetic pathways. Differentially regulated virulence factors included leukotoxins and phenol-soluble modulins, implicated in staphylococcal escape from immune cells. We therefore investigated the ability of the studied isolates to survive internalization by human neutrophils. This showed that the community-associated isolates have the highest neutrophil-killing activity, while the hospital-associated isolates are better adapted to intra-neutrophil survival. Importantly, the latter trait protects internalized staphylococci against a challenge with antibiotics. We therefore conclude that prolonged intra-neutrophil survival serves as a relatively simple early adaptation of S. aureus USA300 to the hospital environment where antibiotic pressure is high.
Project description:Cefquinome is a fourth-generation cephalosporin developed specifically for veterinary use. The mechanism of MRSA resistance to cefquinome is still not established. Therefore, we designed this study to evaluate the effect of cefquinome on the transcriptome of MRSA1679a, a strain that was isolated from a chicken. The transcriptome analysis indicated that multiple efflux pumps (QacA, NorB, Bcr, and ABCb) were upregulated in MRSA1679a as a resistance mechanism to expel cefquinome. Additionally, penicillin-binding protein 1A was overexpressed, which conferred resistance to cefquinome, a β-lactam antibiotic. Adhesion and the biofilm-forming capacity of the MRSA strain was also enhanced in addition to overexpression of many stress-related genes. Genes related to carbohydrate metabolism, secretion systems, and transport activity were also significantly increased in MRSA1679a. In conclusion, global transcription was triggered to overcome the stress induced by cefquinome, and the MRSA1679a showed a great genetic potential to survive in this challenging environment. This study provides a profound understanding of MRSA1679a as a potentially important pathogen and identifies key resistance characteristics of MRSA against cefquinome.
Project description:The success of community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) as pathogens is due to a combination of antibiotic resistance with high virulence. However, evolution of the exceptional virulence potential of CA-MRSA is not understood. Our previous study indicated that differential gene expression contributes substantially to this process. Thus, we here investigated the role of the pivotal virulence gene regulatory system agr in the most prevalent CA-MRSA strain USA300. Using a mouse subcutaneous infection model, we show that agr is essential for the development of CA-MRSA skin infections, the most frequent manifestation of disease caused by CA-MRSA. Furthermore, genome-wide analysis of gene expression revealed significant differences in agr-dependent virulence gene regulation between CA-MRSA, HA-MRSA, and laboratory strains. Our findings demonstrate that agr functionality is critical for CA-MRSA disease and indicate that an adaptation of the agr regulon to optimize expression of a broad set of virulence determinants may have contributed to the evolution of exceptionally pronounced virulence of CA-MRSA strains. Keywords: wild type vs mutant
Project description:Neutrophil lysis after phagocytosis is a process potentially important in the pathogenesis of community-associated methicillin-resistant S. aureus (CA-MRSA) infection. The mechanism for this process is not currently known. Therefore, to better understand CA-MRSA virulence we used human oligonucleotide microarrays to investigate the mechanism underlying enhanced PMN lysis that occurs after phagocytosis of CA-MRSA. In order to examine the effect of S. aureus on the neutrophil transcriptome and to elucidate any possible differences in this effect between hospital- and community-associated S. aureus, we performed microarray expression analysis on human neutrophils treated with hospital- and community-associated S. aureus. Polymorphonuclear leukocytes (PMNs) were isolated from the blood of healthy donors. Control and S. aureus-exposed PMNs were incubated at 37C for 1, 2, 3 or 6 hours.
Project description:The success of community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) as pathogens is due to a combination of antibiotic resistance with high virulence. However, evolution of the exceptional virulence potential of CA-MRSA is not understood. Our previous study indicated that differential gene expression contributes substantially to this process. Thus, we here investigated the role of the pivotal virulence gene regulatory system agr in the most prevalent CA-MRSA strain USA300. Using a mouse subcutaneous infection model, we show that agr is essential for the development of CA-MRSA skin infections, the most frequent manifestation of disease caused by CA-MRSA. Furthermore, genome-wide analysis of gene expression revealed significant differences in agr-dependent virulence gene regulation between CA-MRSA, HA-MRSA, and laboratory strains. Our findings demonstrate that agr functionality is critical for CA-MRSA disease and indicate that an adaptation of the agr regulon to optimize expression of a broad set of virulence determinants may have contributed to the evolution of exceptionally pronounced virulence of CA-MRSA strains. Keywords: wild type vs mutant Wild type vs mutant agr strains.