Project description:Predicting how climate change affects biotic interactions and their evolution poses a challenge. Plant-insect herbivore interactions are particularly sensitive to climate change, as climate-induced changes in plant quality cascade into the performance of insect herbivores. Whereas the immediate survival of herbivore individuals depends on plastic responses to climate change induced nutritional stress, long-term population persistence via evolutionary adaptation requires genetic variation for these responses. In order to assess the prospects for population persistence under climate change, it is therefore crucial to characterise response mechanisms to climate change induced stressors, and quantify their variability in natural populations. Here, we test developmental and transcriptomic responses to water limitation induced host plant quality change in a Glanville fritillary butterfly (Melitaea cinxia) metapopulation. We combine nuclear magnetic resonance spectroscopy on the plant metabolome, larval developmental assays and an RNA seq analysis of the larval transcriptome. We observed that responses to feeding on water limited plants, in which amino acids and aromatic compounds are enriched, showed marked intrapopulation variation, with individuals of some families performing better on control and others on water limited plants. The transcriptomic responses were concordant with the developmental responses: Families exhibiting opposite developmental responses also produced opposite transcriptomic responses, e.g. in growth associated intracellular signalling. The opposite developmental and transcriptomic responses are associated with between families differences in organic compound catabolism and storage protein production. The results reveal heritable intrapopulation variability in plasticity, suggesting potential for evolutionary responses to drought-induced changes in host plant quality in the Finnish M. cinxia metapopulation.
Project description:Climate change forecasts increase the susceptibility of forest due to longer drier seasons. The adaptive management protocols have highlighted the reduction of the forest densification to improve their vulnerability to extreme climate events (i.g. drought). One of this sensitive woody species to climate change is the Abies pinsapo, a relic conifer tree endemic from the southern Spain. Previous works have shown changes in their trends because of the climate change action, being carried out experimental thinning management in their lowest distribution limit, in Sierra de las Nieves Natural Park (Malaga). Our objective is to evaluate the water improvements of thinned trees in terms of light availability by means of a shading treatment in those thinned trees. To do that we have evaluated the synergic effect of ecophysiology, metabolomics and transcriptomics in control, thinning and thinning+shading plots in wet and dry seasons for two years. The results showed strong differences between summer and spring seasons at the three studied levels. The water deficit shows a greater influence than light exposure in the ecophysiology and metabolomics tree response. And the transcriptomics suggested an improvement of thinned trees when light exposure was reduced. Our results support the necessity of adaptive forest management in order to improve the conservation status of A. pinsapo forest. The combination of different levels of tree response is paramount to understand and predict the tree physiology under water and light stress conditions.
Project description:Soil microbial community is a complex blackbox that requires a multi-conceptual approach (Hultman et al., 2015; Bastida et al., 2016). Most methods focus on evaluating total microbial community and fail to determine its active fraction (Blagodatskaya & Kuzyakov 2013). This issue has ecological consequences since the behavior of the active community is more important (or even essential) and can be different to that of the total community. The sensitivity of the active microbial community can be considered as a biological mechanism that regulates the functional responses of soil against direct (i.e. forest management) and indirect (i.e. climate change) human-induced alterations. Indeed, it has been highglihted that the diversity of the active community (analyzed by metaproteomics) is more connected to soil functionality than the that of the total community (analyzed by 16S rRNA gene and ITS sequencing) (Bastida et al., 2016). Recently, the increasing application of soil metaproteomics is providing unprecedented, in-depth characterisation of the composition and functionality of active microbial communities and overall, allowing deeper insights into terrestrial microbial ecology (Chourey et al., 2012; Bastida et al., 2015, 2016; Keiblinger et al., 2016). Here, we predict the responsiveness of the soil microbial community to forest management in a climate change scenario. Particularly, we aim: i) to evaluate the impacts of 6-years of induced drought on the diversity, biomass and activity of the microbial community in a semiarid forest ecocosystem; and ii) to discriminate if forest management (thinning) influences the resistance of the microbial community against induced drought. Furthermore, we aim to ascertain if the functional diversity of each phylum is a trait that can be used to predict changes in microbial abundance and ecosystem functioning.
Project description:High temperature events can disrupt species interactions, including those among hosts, symbionts, and natural enemies. Understanding the genetic and physiological processes underlying these disruptions is a critical scientific challenge in this era of anthropogenic climate change. We explore how high temperatures disrupt the interactions among an herbivorous insect host, Manduca sexta, its insect parasitoid, Cotesia congregata, and the parasitoid’s symbiotic virus. In this system, high temperatures kill developing parasitoids, but not hosts. We evaluated the physiological and transcriptomic causes of thermal mismatch in ecological interactions using parasitoid egg in vitro experiments, immunological assays, and RNAseq. We found that high temperatures disrupt the capacity of the parasitoid’s symbiotic virus to immunosuppress the host insect, resulting in thermal mismatch and death of the parasitoid. At the transcriptomic level, key viral genes involved in suppressing host immune pathways showed reduced expression, driven by the virus’s circular genomic structure. This work is among the first to demonstrate the genetic and physiological mechanisms by which a symbiont limits the ecological functioning of host-parasite dynamics, and provides a framework for understanding how molecular processes give rise to ecological outcomes in response to high temperature events caused by climate change.
2024-08-04 | GSE273477 | GEO
Project description:Long-term cloud forest response to climate warming revealed by insect speciation history
Project description:We investigated the transcriptional response of hybrid poplar (Populus trichocarpa x deltoides) leaves to a variety of stress treatments (insect feeding by Malacosoma disstria larvae, mechanical wounding, and wounding plus the application of insect oral secretions) over a 24 hour time course. Experiments were conducted using clonal trees under greenhouse conditions at the University of British Columbia. We used the 15.5K poplar cDNA microarray platform previously described by Ralph et al. (Molecular Ecology 2006, 15:1275-1297). Differentially expressed genes were determined using three criteria: fold-change between treated and untreated control leaves > 1.5-fold, P value < 0.05 and Q value < 0.05. This study identified > 1,000 differentially expressed genes in response to insect feeding and/or treatments that mimic insect feeding damage. A factorial hybridization design was chosen to assess gene expression among the untreated control leaves, and leaves subjected to one of three stress treatments: forest tent caterpillar (Malacosoma disstria) feeding, mechanical wounding, and mechanical wounding plus the application of forest tent caterpillar oral secretions. For each tree, the lowest five mature leaves were caged in nylon mesh bags, treated or left untreated as a control. Leaves were harvested 2, 6 or 24 hours after the initiation of each treatment and total RNA was individually isolated from each tree. For each treatment and time point, equal amounts of total RNA were combined from each of the five biological replicate trees prior to cDNA microarray analysis. For the herbivory, mechanical wounding and oral secrection treatments, total RNA from treated and untreated control leaves was compared using a balanced loop consisting of direct and indirect comparisons across treatments and time points, with dye balance, using a total of 54 hybridizations.
Project description:Due to the broad climate adaptation of perennial trees, phenological traits (e.g. chilling requirement-CR, bloom date-BD) exhibit complex inheritance patterns. Conceptually, these are adaptive responses to abiotic stress. As production depends on traits like CR, breeders have developed varieties that are phenotypically/genotypically matched to particular geographic/temperature zones. These genotypes are ideal for study of gene networks governing these climate-critical traits. Using genetic approaches, genome-wide association analyses, functional and comparative genomics in fruit and forest trees, we identified a foundational network of genetic activity (phenylpropanoid pathway) linking winter cold stress response to control of the endodormancy-ecodormancy transition (EET) and seed stratification. Our goal is to examine during endodormancy the allelic effects of genes controlling the production of stress related metabolic intermediates that regulate seed stratification, thus linking these two cold temperature responses. Our objective is to use a transcriptome sequencing approach to characterize genotypic effects on the phenylpropanoid gene network transcriptome during endodormancy and the EET. These adaptive genes and gene networks will be targets for knowledge based breeding strategies of fruit and forest trees to sustain and improve these resources to meet the challenges of rapid environmental change