Project description:We evaluated the intestinal responses of pigs under zinc restriction and under different zinc sources through RNA-seq of ileal samples. We identified changes in genes related to zinc transport, immune response, cell proliferation, DNA damage and stress resposne. Our findings demonstrate that swine intestine is responsive to zinc restriction and can be a model sentinel tissue for human zinc deficiency. Further research is needed to define the intestinal responses to organic and inorganic zinc sources.
Project description:The gut microbiota is closely associated with digestion, metabolism, immunity, and host health. The imbalance of the microbial community in livestock directly affects their well-being and, consequently, productivity. The composition and diversity of the gut microbiota are influenced not only by host genetics but also by environmental factors such as the microbial complexity of the rearing environment, feeds, and antibiotics. Here, we focus on the comparison of gut microbial communities in miniature pigs developed for xenotransplantation in specific pathogen-free (SPF) and conventional (non-SPF) facilities. To identify the disparities in gut microbial composition and functionality between these two environments, 16S RNA metagenome sequencing was conducted using fecal samples. The results revealed that the non-SPF pigs had higher gut microbiota diversity than the SPF pigs. The genera Streptococcus and Ruminococcus were more abundant in SPF pigs than in non-SPF pigs. Blautia, Bacteroides, and Roseburia were exclusively observed in SPF pigs, whereas Prevotella was exclusively found in non-SPF pigs. Carbohydrate and nucleotide metabolism, as well as environmental information processing, were predicted to be enriched in SPF pigs. In addition, energy and lipid metabolism, along with processes related to genetic information, cellular communication, and diseases, were predicted to be enriched in non-SPF pigs. This study makes an important contribution to elucidating the impact of environments harboring a variety of microorganisms, including pathogens, on the gut microbiota of miniature pigs. Furthermore, we sought to provide foundational data on the characteristics of the gut microbiota in genetically modified pigs, which serve as source animals for xenotransplantation.
Project description:Improper use of antibiotics in swine could reduce commensal bacteria and possibly increase pathogen infections via the gut resistome. This study aimed to compare the metaproteomic profiles of gut resistome and related metabolism in the cecal microbiota of fattening pigs raised under antibiotic-free (ABF) conditions with those of ordinary industrial pigs (CTRL).
Project description:An early settlement of a complex gut microbiota can protect against gastro-intestinal dysbiosis, but the effects of neonatal microbiota colonization on the maturation of the porcine gastric mucosa are largely unknown. The transcriptome of the oxyntic mucosa of 12 caesarian-derived pigs previously associated with microbiota of different complexity was studied. Pigs received sow blood serum at birth (d0), 2 mL of starter microbiota (10^7 CFU of each Lactob. Amylovorus (LAM), Clostr. glycolicum, and Parabacteroides spp.) on d1-d3 of age and either a placebo inoculant (simple association, SA) or an inoculant consisting of diluted feces of an adult sow (complex association, CA) on d3-d4 of age. Then pigs were fed a moist diet . Gastric samples were obtained at on euthanised pigs at 2 weeks of age.
Project description:How cells safeguard essential zinc-dependent functions during zinc deficiency is poorly understood. A long-debated strategy is whether soluble metal-trafficking chaperones exist to prioritize specific zinc-dependent proteins. We identified a eukaryotic family of metallochaperones that physically interacts with zinc-dependent methionine aminopeptidase type I (MAP1) in human and yeast. Deletion of the yeast metallochaperone-encoding gene NMC1 (formerly YNR029c) leads to a zinc-deficiency growth defect and defective initiator methionine cleavage caused by loss of Map1p activity. To better understand the observed fitness defects due to the lack of NMC1 under zinc deficiency, we used proteomics with Tandem Mass Tag (TMT) quantitation derived from WT, nmc1Delta, and map2Delta nmc1Delta strains grown in zinc-limited (1 uM) or zinc-replete (100 uM) conditions. Proteomics reveal global impacts due to the loss of NMC1 and Map1p function, including mis-regulation of the Zap1p regulon, and suggests that Nmc1p is required to avoid a compounding effect of Map1p dysfunction on cell survival during zinc deficiency.
Project description:An early settlement of a complex gut microbiota can protect against gastro-intestinal dysbiosis, but the effects of neonatal microbiota colonization and early life feeding of medium chain triglycerides on the maturation of the porcine gastric mucosa are largely unknown. The transcriptome of the oxyntic mucosa of 24 caesarian-derived pigs previously associated with microbiota of different complexity and fed a diet fortified or not with medium chain fatty acids was studied. Pigs received pasteurized sow colostrum at birth (d0), 2 mL of starter microbiota (10^7 CFU of each Lactob. Amylovorus (LAM), Clostr. glycolicum, and Parabacteroides spp.) on d1-d3 of age and either a placebo inoculant (simple association, SA) or an inoculant consisting of diluted feces of an adult sow (complex association, CA) on d3-d4 of age. Then half of pigs was fed a moist diet (CON) or, for the remaining half, CTRL fortified in medium chain triglycerides with 7% coconut oil ( MCT). Gastric samples were obtained at on euthanised pigs at 3 weeks of age.
Project description:Zinc (Zn) is an essential trace element for all life forms. Zn supplementation has been used to treat diarrheal disease in children, and in the U.S. swine industry at pharmacological levels to promote growth and fecal consistency, but underlying mechanisms explaining these beneficial effects remain unknown. Thus, we hypothesized that the benefits of pharmacological Zn supplementation were a result of changes in gene expression. For this study, liver RNA from newly weaned pigs fed dietary Zn as Zn oxide for 14 days at either adequate (150 Zn/kg) or pharmacological (2000 mg Zn/kg) levels was evaluated using a 70-mer oligonucleotide microarray. Interrogation of this microarray revealed 658 annotated transcripts (FDR ≤ 0.05) affected by pharmacological Zn supplementation. Relative real-time RT-PCR was used to confirm differential expression of two genes. Results suggest that feeding pharmacological Zn (2000 mg Zn/kg) affects genes involved in reducing oxidative stress and in amino acid metabolism, which are essential for cell detoxification and proper cell function.