Project description:We used a transcriptome sequencing approach to analyze different expression levels of three barley varieties under both infected and uninfected conditions
Project description:Waterlogging leads to major crop losses globally, particularly for waterlogging sensitive crops such as barley. Waterlogging reduces oxygen availability and results in additional stresses, leading to the activation of hypoxia and stress response pathways that promote plant survival. Although certain barley varieties have been shown to be more tolerant to waterlogging than others and some tolerance-related QTLs have been identified, the molecular mechanisms underlying this trait are mostly unknown. Transcriptomics approaches can provide very valuable information for our understanding of waterlogging tolerance. Here, we surveyed 21 barley varieties for the differential transcriptional activation of conserved hypoxia-response genes under waterlogging, and selected five varieties with different levels of induction of core hypoxia-response genes. We further characterized their phenotypic response to waterlogging in terms of shoot and root traits. RNA-sequencing to evaluate the genome-wide transcriptional responses to waterlogging of these selected varieties led to the identification of a set of 98 waterlogging-response genes common to the different datasets. Many of these genes are orthologs of the so-called ‘core hypoxia response genes’, thus highlighting the conservation of plant responses to waterlogging. Hierarchical clustering analysis also identified groups of genes with intrinsic differential expression between varieties prior to waterlogging stress. These genes could constitute interesting candidates to study ‘predisposition’ to waterlogging tolerance or sensitivity in barley.
Project description:To investigate the salt and waterlogging mechanism of barley, we chose salt and waterlogging sensitive and tolerant varieties as subjects. We then performed gene expression profiling analysis using data obtained from RNA-seq of two varieties at two three points.
Project description:Malting is seed germination under strictly controlled environmental conditions. Malting quality is a complex phenotype that combines a large number of interrelated components, each of which shows complex inheritance. Currently, only a few genes involved in determining malting quality have been characterized. This study combined transcript profiling with phenotypic correlations to identify candidate genes for malting quality. We used the Barley1 GeneChip® array to identify differentially expressed genes in four malting stages relative to dry seed in the barley variety Morex, and to identify differentially expressed genes among four barley varieties. Keywords: time course and genotype differences
Project description:Detection of single feature polymorphisms comparing five barley genotypes. Gene expression under unstressed and drought stressed conditions. Tissue from five entire five day old seedlings from drought stress or unstressed growth conditions was used for RNA extraction. For Barke, Morex and Stepoe the two types of RNA were pooled. For Oregon Wolfe Barley Dominant and Recessive (OWBs), the two types of RNA were handled separately. Targets from three biological replicates of each genotype-treatment were generated and transcript levels were determined using Affymetrix Barley1 GeneChip arrays. Probe set, followed by single probe, comparisons between genotypes allows the identification of single feature polymorphisms in comparisons between genotypes. For the OWBs, comparisons between stressed and unstressed conditions defines stress-regulated genes. Keywords: repeat
Project description:Chevallier is a heritage english landrace of barley first planted in 1820 while Tipple is modern cultivar of barley released in 2004. Pseudomonas strains were isolated from the rhizospheres of the two varieties and 22 and 20 of the most phylogenetically distinct ones were sequenced to find out the difference in genotypes preferentially selected in the rhizospheres of the two cultivars.
Project description:The aim of this experiment was to investigate the transcriptomic variation within Blumeria graminis f. sp. hordei during infection of Barley. SOLiD RNA-seq data was generated for 6 samples, three from the epiphytic hyphae and three from the haustoria within the epidermis.
Project description:Pseudomonas fluorescens SBW25 cultures were inoculated into the rhizospheres of barley seedlings of the Chevallier and Tipple varieties growing in axenic cultures. Bacterial cells were collected from the rhizosphere one and five days after inculation and RNA extracted from them. Culture used for inoculation (but not exposed to the rhizospheres) were used as control. The aim of the experiment was to determine the changes in gene expression of P. fluorescens SBW25 upon exposure to barley rhizosphere and also to determine if the rhizospehres of the two varieties of Barley had different effects on gene expression of P. fluorescens SBW25.
Project description:There is growing evidence for the prevalence of DNA copy number variation (CNV) and its role in phenotypic variation in recent years. Comparative genomic hybridization (CGH) was used to explore the extent of this type of structural variation in the barley genome. In a panel of 14 genotypes including domesticated cultivars and wild barleys, we found that 14.9% of all the sequences on the array are affected by CNV. Higher levels of CNV diversity are present in the wild accessions relative to cultivated barley. A substantial portion (37%) of the CNV events are present in both wild and domesticated barley. CNVs are enriched in telomeric regions for all chromosomes except 4H, which is also the barley chromosome with the lowest proportion of CNVs. CNV affected 9.5% of the coding sequences represented on the array. The genes affected by CNV are enriched for sequences annotated as disease-resistance proteins and protein kinases, suggesting the potential for CNV to influence variation for responses to biotic and abiotic stress. The analysis of CNV breakpoints indicated that DNA repair mechanisms of double-strand breaks (DSBs) via single-stranded annealing (SSA) and synthesis-dependent strand annealing (SDSA) play an important role in the origin of many structural changes in barley. Here we present the first catalog of CNVs in a diploid Triticeae species, which opens the door for future genome diversity research in a tribe that comprises the economically important cereal species wheat, barley and rye. Our findings constitute a valuable resource for the identification of CNV affecting genes of agronomic importance.
Project description:Detection of single feature polymorphisms comparing five barley genotypes. Gene expression under unstressed and drought stressed conditions. Tissue from five entire five day old seedlings from drought stress or unstressed growth conditions was used for RNA extraction. For Barke, Morex and Stepoe the two types of RNA were pooled. For Oregon Wolfe Barley Dominant and Recessive (OWBs), the two types of RNA were handled separately. Targets from three biological replicates of each genotype-treatment were generated and transcript levels were determined using Affymetrix Barley1 GeneChip arrays. Probe set, followed by single probe, comparisons between genotypes allows the identification of single feature polymorphisms in comparisons between genotypes. For the OWBs, comparisons between stressed and unstressed conditions defines stress-regulated genes. Experiment Overall Design: Three genotypes, three replicates each. Two additional genotypes, two sets of three replicates each.