Project description:While in transit within and between hosts, uropathogenic E. coli (UPEC) encounter multiple stresses, including substantial levels of nitric oxide and reactive nitrogen intermediates. Strains of UPEC become conditioned to high concentrations of acidified sodium nitrite (ASN), a model system used to generate nitrosative stress. We used microarrays to define the expression profile of UPEC that have been conditioned for growth in ASN.
Project description:We previously determined that loss of respiratory quinol oxidase cytochrome bd disrupts biofilm formation in uropathogenic Escherichia coli (UPEC). In this study, we extracted and interrogated the outer membrane and extracellular matrix of colony biofilms formed by UPEC isolate UTI89 and an isogenic mutant lacking cytochrome bd (∆cydAB).
Project description:Uropathogenic Escherichia coli (UPEC) is the major causative agent of uncomplicated urinary tract infections (UTIs). A common virulence genotype of UPEC strains responsible for UTIs is yet to be defined, due to the large variation of virulence factors observed in UPEC strains. We hypothesized that studying UPEC functional responses in patients might reveal universal UPEC features that enable pathogenesis. Here we identify a transcriptional program shared by genetically diverse UPEC strains isolated from 14 patients during uncomplicated UTIs. Strikingly, this in vivo gene expression program is marked by upregulation of translational machinery, providing a mechanism for the rapid growth within the host. Our analysis indicates that switching to a more specialized catabolism and scavenging lifestyle in the host allows for the increased translational output. Our study identifies a common transcriptional program underlying UTIs and illuminates the molecular underpinnings that likely facilitate the fast growth rate of UPEC in infected patients.
Project description:A strain of UPEC CFT073 lacking the three known NO detoxifiaction mechanisms, Hmp, FlRd and Nrf is used to study the global effect of NO on the pathogen
Project description:The objective was to determine the function of the novel uropathogenic Escherichia coli (UPEC) gene R049 during host infection. We infected the urinary tracts of mice with E. coli UPEC132 or the R049 deletion mutant UPEC132ΔR049.The mouse kidneys were harvested at 4 and 8 h post-infection and screened for differentially expressed genes by microarray analysis. We identified 379 and 515 differentially expressed genes at 4 and 8 h post-infection, respectively. Thirty-four of these genes were associated with inflammatory and immune signaling pathways, including those related to mitogen-activated protein kinase signaling, leukocyte transendothelial migration, cytokine-cytokine receptor interaction, Toll-like receptor signaling, and apoptosis. Protein binding (GO 0005515) was the most prevalent molecular function in the Gene Ontology terms related to differentially expressed genes. In conclusion, R049 expression in UPEC132 is related to the early innate immune and inflammatory responses in UPEC-infected hosts. This work lays the foundation for further research on anti-infective immunity against UPEC.
Project description:The features of Mycoplasma in human organ such lung and urinary tract are enigmatic. Here, the role of M. hominis in regard to biofilm formation of uropathogenic Escherichia coli (UPEC) strain CFT073 was investigated. Although M. hominis were inferred to not impact on UPEC bacterial fitness including growth and productions of signaling molecules as autoinducer-2 (AI-2) and indole, we found that the presence of M. hominis dramatically decreased biofilm formation of UPEC CFT073 as well as slightly repressed attachment and cytotoxicity of that. Importantly, this activity was observed on UPEC strain specifically, not enterohemorrhagic E. coli (EHEC) strain that exists on intestine. Whole-transcriptome profiling and quantitative real-time polymerase chain reaction (qRT-PCR) analysis revealed PhoPQ system and anti-termination protein (encoded by ybcQ) participates on the reduction of biofilm formation by M. hominis (corroborated by qRT-PCR). Furthermore, collaborating with previous report that toxin-antitoxin (TA) system involved in biofilm formation, M. hominis increased on the transcriptions of toxin genes including hha (toxin gene in Hha-TomB TA system) and pasT (toxin part in PasT-PasI TA system). Hence, we propose that one possible role of M. hominis is to influence bacterial biofilm formation in urinary tract. Only fourteen genes were induced (2.5-fold) by the presence of M. hominis in Uropathogenic Escherichia coli (UPEC) biofilm cells. Among upregulated genes, ybcQ (encodes anti-termination protein Q homolog) and phoP/phoQ (encode DNA-binding response regulators in two-component regulatory system), were induced by the presence of M. hominis. Two-condition experiment, UPEC CFT073 alone vs. UPEC CFT073 with Mycoplasma hominis PG21 (10^5 ccu/ml). For preparing the total RNA, UPEC CFT073 cells were grown at 37°C in biofilm cells on glass wool with or without M. hominis for 24 h.
Project description:To prevent the onset of urosepsis and reduce mortality, a better understanding of how uropathogenic Escherichia coli (UPEC) manages to infiltrate the bloodstream through the kidneys is needed. The present study elucidates if human renal interstitial fibroblasts are part of the immune response limiting a UPEC infection, or if UPEC has the ability to modulate the fibroblasts for their own gain. Microarray results showed that upregulated genes were associated with an activated immune response. We also found that chemokines released from renal fibroblasts upon a UPEC infection could be mediated by LPS and triacylated lipoproteins activating the TLR2/1, TLR4, MAPK, NF-κB and PKC signaling pathways. Furthermore, UPEC was also shown to be able to adhere and invade renal fibroblasts, mediated by the P-fimbriae. Furthermore, it was found that renal fibroblasts were more immunoreactive than renal epithelial cells upon a UPEC infection. However, both renal fibroblasts and epithelial cells were equally efficient at inducing neutrophil migration. In conclusion, we have found that human renal fibroblasts can sense UPEC and mobilize a host response with neutrophil migration. This suggests that renal fibroblasts are not only structural cells that produce and regulate the extracellular matrix, but also highly immunoreactive cells.
Project description:Urinary tract infections (UTIs) are a very common bacterial infectious disease in humans, and uropathogenic Escherichia coli (UPEC) are the most frequent cause of UTIs. During infection, UPEC must cope with a variety of stressful conditions in the urinary tract. Here, we demonstrated that the small RNA (sRNA) RyfA of UPEC strains was required for resistance to oxidative and osmotic stresses. Inactivation of ryfA in UPEC strain CFT073 decreased urinary tract colonization in CBA/J mice and the ryfA mutant also had reduced production of type 1 and P fimbriae, which are known to be important for UTI. Transcriptomic analysis of the ryfA mutant showed changes in expression of genes associated with general stress responses, metabolism, biofilm formation and genes coding for cell surface proteins. Furthermore, loss of ryfA also reduced UPEC survival in human macrophages. Thus, ryfA plays a key regulatory role in UPEC adaptation to stress, that contributes to UTI and survival in macrophages.
Project description:The features of Mycoplasma in human organ such lung and urinary tract are enigmatic. Here, the role of M. hominis in regard to biofilm formation of uropathogenic Escherichia coli (UPEC) strain CFT073 was investigated. Although M. hominis were inferred to not impact on UPEC bacterial fitness including growth and productions of signaling molecules as autoinducer-2 (AI-2) and indole, we found that the presence of M. hominis dramatically decreased biofilm formation of UPEC CFT073 as well as slightly repressed attachment and cytotoxicity of that. Importantly, this activity was observed on UPEC strain specifically, not enterohemorrhagic E. coli (EHEC) strain that exists on intestine. Whole-transcriptome profiling and quantitative real-time polymerase chain reaction (qRT-PCR) analysis revealed PhoPQ system and anti-termination protein (encoded by ybcQ) participates on the reduction of biofilm formation by M. hominis (corroborated by qRT-PCR). Furthermore, collaborating with previous report that toxin-antitoxin (TA) system involved in biofilm formation, M. hominis increased on the transcriptions of toxin genes including hha (toxin gene in Hha-TomB TA system) and pasT (toxin part in PasT-PasI TA system). Hence, we propose that one possible role of M. hominis is to influence bacterial biofilm formation in urinary tract. Only fourteen genes were induced (2.5-fold) by the presence of M. hominis in Uropathogenic Escherichia coli (UPEC) biofilm cells. Among upregulated genes, ybcQ (encodes anti-termination protein Q homolog) and phoP/phoQ (encode DNA-binding response regulators in two-component regulatory system), were induced by the presence of M. hominis.