Project description:This SuperSeries is composed of the following subset Series: GSE26981: Responses to ectoparasite salmon louse (Lepeophtheirus salmonis) in skin of Atlantic salmon GSE26984: Responses to ectoparasite salmon louse (Lepeophtheirus salmonis) in spleen of Atlantic salmon Refer to individual Series
Project description:We have utilized a microarray containing 11,100 salmon louse genes to study the gene expression patterns in selected salmon louse tissues: brain (neuronal and gland enriched tissue), subcuticular tissue, gut, ovary, and testis of adult louse.
Project description:Background: Salmonid species have followed markedly divergent evolutionary trajectories in their interactions with sea lice. While sea lice parasitism poses significant economic, environmental, and animal welfare challenges for Atlantic salmon (Salmo salar) aquaculture, coho salmon (Oncorhynchus kisutch) exhibit near-complete resistance to sea lice, achieved through a potent epithelial hyperplasia response leading to rapid louse detachment. The molecular mechanisms underlying these divergent responses to sea lice are unknown. Results: We characterised the cellular and molecular responses of Atlantic salmon and coho salmon to sea lice using single-nuclei RNA sequencing. Juvenile fish were exposed to copepodid sea lice (Lepeophtheirus salmonis), and lice-attached pelvic fin and skin samples were collected 12h, 24h, 36h, 48h, and 60h after exposure, along with control samples. Comparative analysis of control and treatment samples revealed an immune and wound-healing response that was common to both species, but attenuated in Atlantic salmon, potentially reflecting greater sea louse immunomodulation. Our results revealed unique but complementary roles of three layers of keratinocytes in the epithelial hyperplasia response leading to rapid sea lice rejection in coho salmon. Our results suggest that basal keratinocytes direct the expansion and mobility of intermediate and, especially, superficial keratinocytes, which eventually encapsulate the parasite. Conclusions: Our results highlight the key role of keratinocytes in coho salmon’s sea lice resistance, and the diverged biological response of the two salmonid host species when interacting with this parasite. This study has identified key pathways and candidate genes that could be manipulated using various biotechnological solutions to improve Atlantic salmon sea lice resistance.
Project description:Characterisation of the maternal yolk associated protein (LsYAP) and establishment of systemic RNA interference in the salmon louse (Lepeophtheirus salmonis) (Crustacea, Copepoda)
Project description:Major vault protein (MVP) is the main component of the vault complex, which is a highly conserved ribonucleoprotein complex found in most eukaryotic organisms. MVP or vaults have previously been found to be overexpressed in multidrug-resistant cancer cells and implicated in various cellular processes such as cell signaling and innate immunity. The precise function of MVP is, however, poorly understood and its expression and probable function in lower eukaryotes are not well characterized. In this study, we report that the Atlantic salmon louse expresses three full-length MVP paralogues (LsMVP1-3). Furthermore, we extended our search and identified MVP orthologues in several other ecdysozoan species. LsMVPs were shown to be expressed in various tissues at both transcript and protein levels. In addition, evidence for LsMVP to assemble into vaults was demonstrated by performing differential centrifugation. LsMVP was found to be highly expressed in cement, an extracellular material produced by a pair of cement glands in the adult female salmon louse. Cement is important for the formation of egg strings and hence serves as a protective coat for developing embryos. Our results imply a possible novel function of LsMVP as a secretory cement protein. LsMVP may play a role in structural or reproductive functions, although this has to be further investigated.
Project description:Salmon infected with an ectoparasitic marine copepod, the salmon louse Lepeophtheirus salmonis, incur a wide variety of consequences depending upon host sensitivity. Juvenile pink salmon (Oncorhynchus gorbuscha) migrate from natal freshwater systems to the ocean at a young age relative to other Pacific salmon, and require rapid development of appropriate defences against marine pathogens. We analyzed the early transcriptomic responses of naïve juvenile pink salmon of sizes 0.3g (no scales), 0.7g (mid-scale development) and 2.4g (scales fully developed) to a low-level laboratory exposure with early moult stage L. salmonis. All infected size groups exhibited unique transcriptional profiles. Inflammation and inhibition of cell proliferation was identified in the smallest size class (0.3g), while increased glucose absorption and retention was identified in the middle size class (0.7g). Tissue-remodelling genes were also up-regulated in both the 0.3g and 0.7g size groups. Profiles of the 2.4g size class indicated cell-mediated immunity and possibly parasite-induced growth augmentation. Understanding a size-based threshold of resistance to L. salmonis is important for fisheries management. This work characterizes molecular responses reflecting the gradual development of innate immunity to L. salmonis between the susceptible (0.3g) and refractory (2.4g) pink salmon size classes.
Project description:Leaf colour variation is observed in several plants. We obtained two types of branches with yellow (H1) and variegated (H2) leaves from Camellia sinensis. To reveal the mechanisms that underlie the leaf colour variations, proteomic analysis using label-free MS-based approach was performed using leaves from variants and normal branches (CKs).
Project description:Glucosinolates (GLs) present in plants from the Brassica family hold promise in the biological control of the skin parasite salmon louse (Lepeophtheirus salmonis) in farmed Atlantic salmon. We recently reported significantly reduced lice infestation in fish fed GLs. However, their wider application requires better knowledge of GLs’ actions, including positive and adverse effects that may occur under the overexposure. Microarray analyses performed in the liver, muscle and distal kidney of salmon under high dose of GLs suggested massive tissue remodeling and reduction of cellular proliferation in skeletal muscle and liver. In the distal kidney, gene expression profiles induced under the high dose of GLs pointed to activation of anti-fibrotic responses. At the same time, prevalent activation of genes from the Phase-2 detoxification pathways could be considered part of beneficial effects. Multiple gene expression evidence suggested GLs-mediated iron/heme withdrawal response, including increase in heme degradation in muscle (up-regulation of heme oxygenase-1), decrease of its synthesis in liver (down-regulation of porphobilinogen deaminase) and increase in iron sequestration from blood (hepatic induction of hepcidin-1 and renal induction of intracellular storage protein ferritin). This could be beneficial upon encounter with the parasite, which depends on the provision of iron/heme by the host.
Project description:The salmon louse is an ectoparasitic copepod that causes major economic losses in the aquaculture industry of Atlantic salmon. This host displays a high level of susceptibility to lice which can be accounted for by several factors including stress. In addition, the parasite itself acts as a potent stressor of the host, and outcomes of infection can depend on biotic and abiotic factors that stimulate production of cortisol. Consequently, examination of responses to infection with this parasite, in addition to stress hormone regulation in Atlantic salmon, is vital for better understanding of the host pathogen interaction. Atlantic salmon post smolts were exposed to stress hormone cortisol, lice and their combination. The transcriptomic effects of hormone treatment in salmon skin were significantly greater than lice-infection induced changes. Cortisol stimulated expression of genes involved in metabolism of steroids and amino acids, chaperones, responses to oxidative stress and eicosanoid metabolism and suppressed genes related to antigen presentation, B and T cells, antiviral and inflammatory responses. Cortisol and liceBoth treatments equally down-regulated a large panel of motor proteins that can be important for wound contraction. Cortisol also suppressed multiple genes involved in wound healing, parts of which were activated by the parasite. Down-regulation of collagens and other structural proteins was in parallel with the induction of proteinases that degrade extracellular matrix (MMP9 and MMP13). Cortisol reduced expression of genes encoding proteins involved in formation of various tissue structures, regulators of cell differentiation and growth factors.