Project description:This study was conduct to identify the virus-responsive transcripts in Atlantic cod, using viral mimic, polyriboinosinic polyribocytidylic acid (pIC)
Project description:The Atlantic cod (Gadus morhua L.) is one of the most important species in the Baltic Sea with high ecological and economical value. To explore the differences in adaptation to salinity between Baltic cod from different regions, western (Kiel Bight) and eastern (Gdańsk Bay) samples were analyzed through oligonucleotide microarray.
Project description:This study was performed to validate the newly developed CGP Atlantic cod 20K oligonucleotide microarray. Atlantic cod (Gadus morhua) received an intraperitoneal injection of either formalin-killed, atypical Aeromonas salmonicida (Asal) or PBS and transcriptional profiles of spleen tissues from Asal-injected fish were compared to those from pre-injection control fish and PBS-injected control fish. Gene expression profiles resulting from this study were compared to those from suppression subtractive hybridization library studies, that were previously performed on the same samples, and to literature. Gene expression patterns of single genes were confirmed by QPCR analysis. This study has shown that the newly developed CGP Atlantic cod 20K oligo microarray platform is a valuable tool for cod genomic research.
Project description:In order to investigate the underlying mechanisms of PCB 153 mediated toxicity to Atlantic cod (Gadus morhua), we analyzed the liver proteome of fish exposed to various doses of PCB 153 (0, 0.5, 2 and 8mg/kg body weight) for two weeks and examined the effects on expression of liver proteins using quantitative proteomics. Label-free mass spectrometry enabled quantification of 1272 proteins, and 78 were differentially regulated between PCB 153 treated samples and controls. Two proteins downregulated due to PCB 153 treatment, Glutathione S-transferase theta 1 (GSTT1) and sulfotransferase family protein 1 (ST2B1), were verified using selected reaction monitoring (SRM). Supported by bioinformatics analyses, we concluded that PCB 153 perturbs lipid metabolism in the Atlantic cod liver and that increased levels of lipogenic enzymes indicate increased synthesis of fatty acids and triglycerides.
Project description:Effects of oil pollution and persistent organic pollutants (POPs) on the glycerophospholipids in the liver of male Atlantic cod (Gadus morhua)
Project description:Lipid metabolism is essential in maintaining energy homeostasis in multicellular organisms. In vertebrates, the peroxisome proliferator-activated receptors (PPARs, NR1C) regulate the expression of many genes involved in these processes. Four Ppar subtypes from Atlantic cod (Gadus morhua) were recently cloned and characterized. However, the downstream regulatory role of Ppars in cod lipid metabolism is presently not well understood or described. Here we study the involvement of Atlantic cod Ppar subtypes in systemic regulation of lipid metabolism using the model agonists WY14,643, GW501516, and tetradecylthioacetic acid, employing a multiple omics approach after an in vivo exposure situation.
Project description:In order to investigate the underlying mechanisms of methylmecury (MeHg)-mediated toxicity to Atlantic cod (Gadus morhua), we analyzed the liver proteome of fish exposed in vivo to MeHg (0, 0.5, 2 mg/kg body weight) for 2 weeks. Label-free quantitative mass spectrometry enabled quantification of 1143 proteins, and 125 were differentially regulated between MeHg-treated samples and controls. Six proteins among the top differentially regulated (T23O, GLNA EPS8L2, APOA4, RAP1B, CZTZ) were analyzed using selected reaction monitoring (SRM). Supported by bioinformatics analyses, we conclude that MeHg disrupts mainly redox homeostasis and energy generating metabolic pathways in cod liver, the latter potentially modulated through MeHg-induced oxidative stress.
Project description:Early life stage mortality is an important issue for Atlantic cod aquaculture. The impact of the cod maternal (egg) transcriptome on egg quality and mortality during embryonic development is poorly understood. In the present work we studied embryonic mortality and maternal transcript expression using 15 females within an Atlantic cod broodstock development program. Cumulative mortality at 7 days post-fertilization (segmentation stage) and percent hatch were used to assess embryonic survival as an indicator of egg quality. A 20,000 probe (20K) microarray experiment compared the 7 hour post-fertilization (7 hpf, ~ 2-cell stage) egg transcriptome of the two lowest quality females (both with less than 1 percent hatch) to that of the highest quality female (greater than 50 percent hatch).