Project description:Similar to other plant-parasitic nematodes, root lesion nematodes possess an array of enzymes that are involved in degradation of the plant cell wall. Here we report the identification of a gene encoding a cell wall degrading enzyme, pectin methylesterase PME (EC 3.1.1.11), in the root lesion nematode Pratylenchus penetrans. Both genomic and coding sequences of the gene were cloned for this species, showing the presence of four introns that excluded a potential bacterial contamination. Expression of the Pp-pme gene was localized in the esophageal glands of P. penetrans as determined by in situ hybridization. Temporal expression of Pp-pme in planta was validated for early time points of infection. The possible function and activity of the gene were assessed by transient expression of Pp-pme in N. benthamiana plants via a Potato virus X-based vector. To our knowledge, this is the first report on identification and characterization of a PME gene within the phylum Nematoda.
2019-02-28 | PXD012419 | Pride
Project description:Plant-parasitic nematode field sampling
Project description:Angiostrongylus costaricensis is a relatively uncharacterized nematode that causes abdominal angiostrongyliasis in Latin America, a human parasitic disease. Currently, no effective pharmacological treatment for angiostrongyliasis exists. Peptidases are known to be druggable targets for a variety of diseases and are essential for several biological processes in parasites. Therefore, this study aimed to systematically characterize the peptidase activity of A. costaricensis in different developmental stages of this parasitic nematode.
Project description:Strongyloides ratti is a parasitic nematode of rats and a laboratory model for nematode infection more generally. The aim of this experiment was to determine the gene expression response of parasitic females to abiotic factors in its environment ex vivo that may be relevant to its natural environment in the gut in vivo. Thus, we used cDNA arrays to assay transcriptional responses to high and low salt, to RPMI versus PBS media and to 37C versus 40C. A moderate number of gene expression changes were observed.
Project description:Cereal cyst nematode (Heterodera avenae) can be attracted by wheat roots before infestation, while largely is unknown underlying this phenomenon. Here, we examined the transcriptional responses of both wheat roots and nematodes during the attraction stage by mRNA sequencing analysis (with and without reference genome, respectively). We found that consistent with their respective mobility, the immobile host wheat root only had 93 DEGs (27 up-regulated and 66 down-regulated), while the mobile plant parasitic nematode H. avenae reacted much more actively with 879 DEGs (867 up-regulated and 12 down-regulated). Among the DEGs, a number of wheat DEGs (most down-regulated) were involved in biotic stress pathways, while several putative effector genes (up-regulated) were found in the nematode DEGs. Results of the experiments demonstrated that nematode responds more actively than wheat during the attraction stage of parasitism, and the parasite responses mainly involved up-regulation whereas the host responses mainly involved down-regulation.
Project description:In this experiment we measured the transcriptional response of ten tomato cultivars when infected by the plant-parasitic nematode M. incognita. The ten cultivars showed differential levels of susceptibility to M. incognita infection. Ten-days old plants were exposed to nematodes and harvested 1, 2, 3, 4, 7, or 10 days post infection. Galls or representative uninfected tissues were harvested and used for RNA sequencing. The data was used to investigate the link between susceptibility to M. incognita infection and gene expression in tomato.