Project description:Genetic and limited palaeoanthropological data suggest that Denisovans, a sister group to Neanderthals, were once widely distributed in eastern Eurasia, likely stretching from high-latitude Siberia, to the high-altitude Tibetan Plateau, to the low-latitude subtropical regions of southeast Asia. This suggests that Denisovans were capable of adapting to a highly diverse range of environments, but archaeological evidence for this is currently limited. As a result, we know little about their behaviours, including subsistence strategies, across the vast areas they likely occupied. Here, we describe the late Middle to Late Pleistocene faunal assemblage from Baishiya Karst Cave on the Tibetan Plateau, where the Xiahe Denisovan mandible and Denisovan sedimentary mtDNA were found, by integrating proteomic screening into traditional zooarchaeological analysis. The results indicate that the faunal assemblage consists of a diverse range of animals, including megafauna, large mammals, small mammals and birds, but is dominated by medium-sized herbivores. Frequent cut marks and percussion traces on bone surfaces throughout the assemblage, even on carnivore bones, indicate that Denisovan activities in Baishiya Karst Cave from at least 190 to 30 thousand years are responsible for the fauna assemblage accumulation. Thorough utilization of acquired animal resources, even perhaps the fur, too, might have helped Denisovans to survive through the last two glacial-interglacial cycles on the cold high-altitude Tibetan Plateau. Our results shed new light on Denisovan behaviours and their adaptations to the diverse and fluctuated environments in the Middle and Late Pleistocene eastern Eurasia.
Project description:The purpose of this study was to determine the effects of normal diet feed (NF) and alternative diet feed (AF) on animal performance, gene expression in adipose, liver, and muscle, and changes in bacteria and fungi in the rumen of Bos-Taurus using high-throughput sequencing methods. In addition, Interactions between differentially expressed genes (DEGs) in major metabolic organs and rumen bacteria /fungi were studied. A total of 34,360 genes were found to be expressed across all tissues examined based on transcriptome analysis. According to our findings, 34, 36, 28 genes were differentially expressed in the adipose, liver, and muscle tissues, respectively. A majority of DEGs identified were related to osteoclast differentiation, phagosomes, and immune-functions etc. A study of rumen samples revealed that Firmicutes and Bacterioidetes were the most common phyla. An AF diet significantly increased Firmicutes abundance and reduced Bacterioidetes abundance (p< 0.05). Genus-level analysis revealed that the occurrence of Faecalicatena, Intestinimonas, Lachnoclostridium, Faecalicatena, and Intestinimonas was higher (p < 0.05) in animals fed with the AF diet than in animals fed with an NF diet. As for fungi, Neocallimastigomycota accounted for 98.2% of the NF diet and 86.88% of the AF diet. The AF increased the abundance of Orpinomyces (21.15% to 29.7%), Piromyces (0.1% to 1.8%), and other fungi, but reduced the abundance of Neocallimastix (72.0% to 25.2%). Analysis of the correlation between DEGs and microbes showed that rumen bacteria/fungi significantly influenced expression levels of genes in adipose, liver, and muscle tissues