Project description:Spotted hyena (Crocuta crocuta) is the only extant species of the genus Crocuta, which once occupied a much wider range during the Pliocene and Pleistocene. However, its origin and evolutionary history is somewhat contentious due to discordances being found between morphological, nuclear, and mitochondrial data. Due to the limited molecular data from east Asian Crocuta, and the difficulty of extracting ancient DNA from this area, here we present proteomic analysis of cave hyenas from three locations in northern China. This marks the first proteomic data generated from cave hyenas, adding new molecular data to the east Asian populations. Phylogenetic analysis based on these protein sequences reveals two different groups of cave hyenas in east Asia, one of which could not be distinguished from modern spotted hyenas from northern Africa, tentatively the result of previously suggested gene flow between these lineages. With developments of instrumentation and analytical methods, proteomics holds promising potential for the phylogenetic reconstruction of ancient fauna previously thought to be unreachable using ancient DNA.
Project description:Ancient DNA (aDNA) sequencing has enabled reconstruction of speciation, migration, and admixture events for extinct taxa. Outside the permafrost, however, irreversible aDNA post-mortem degradation has so far limited aDNA recovery to the past ~0.5 million years (Ma). Contrarily, multiple analyses suggested the presence of protein residues in Cretaceous fossil remains. Similarly, tandem mass spectrometry (MS) allowed sequencing ~1.5 million year (Ma) old collagen type I (COL1), though with limited phylogenetic use. In the absence of molecular evidence, the speciation of several Early and Middle Pleistocene extinct species remain contentious. In this study, we address the phylogenetic relationships of the Eurasian Pleistocene Rhinocerotidae using a ~1.77 Ma old dental enamel proteome of a Stephanorhinus specimen from the Dmanisi archaeological site in Georgia (South Caucasus). Molecular phylogenetic analyses place the Dmanisi Stephanorhinus as a sister group to the woolly (Coelodonta antiquitatis) and Merck’s rhinoceros (S. kirchbergensis) clade. We show that Coelodonta evolved from an early Stephanorhinus lineage and that the latter includes at least two distinct evolutionary lines. As such, the genus Stephanorhinus is currently paraphyletic and requires systematic revision. We demonstrate that Early Pleistocene dental enamel proteome sequencing overcomes the limits of ancient collagen- and aDNA-based phylogenetic inference. It also provides additional information about the sex and taxonomic assignment of the specimens analysed. Dental enamel, the hardest tissue in vertebrates, is highly abundant in the fossil record. Our findings reveal that palaeoproteomic investigation of this material can push biomolecular investigation further back into the Early Pleistocene.
Project description:The genus Flaveria has been extensively used as a model to study the evolution of C4 photosynthesis as it contains both C3 and C4 species as well as a number of species that exhibit intermediate types of photosynthesis. The current phylogenetic tree of the Flaveria genus contains 21 of the 23 known Flaveria species and has been constructed using a combination of morphologicial data and three non-coding DNA sequences (nuclear encoded ETS, ITS and chloroplast encoded trnl-F). However, recent studies have suggested that phylogenetic trees inferred using a small number of molecular sequences may often be incorrect. Moreover, studies in other genera have often shown substantial differences between trees inferred using morphological data and those using molecular sequence. To provide new insight into the phylogeny of the genus Flaveria we utilize RNA-Seq data to construct a multi-gene concatenated phylogenetic tree of 17 Flaveria species. Furthermore, we use this new data to identify 14 C4 specific non-synonymous mutation sites, 12 of which (86%) can be independently verified by public sequence data. We propose that the data collection method provided in this study can be used as a generic method for facilitating phylogenetic tree reconstruction in the absence of reference genomes for the target species. 18 Flaveria sample including 11 species are sequenced, other three samples were also sequenced as out-group. In all, 21 samples.
Project description:A major challenge in biology is to determine how evolutionarily novel characters originate, however, mechanistic explanations for the origin of novelties are almost completely unknown. The evolution of mammalianM-BM- pregnancy is an excellent system in which to study the origin of novelties because extant mammals preserve major stages in the transition from egg-laying to live-birth. To determine the molecular bases of this transition we characterized the pregnant/gravid uterine transcriptome from tetrapods, including species in the three major mammalian lineages, and used ancestral transcriptome reconstruction to trace the evolutionary history of uterine gene expression. We show that thousands of genes evolved endometrial expression during the origins of mammalian pregnancy, including numerous genes that mediate maternal-fetal communication and immunotolerance.Furthermore we show that thousands of regulatory elements active inM-BM- decidualized human endometrial stromal cellsM-BM- are derived from ancient mammalian transposable elements which provided binding sites for transcription factors that mediate decidualization and endometrial cell-type identity.M-BM- Our results indicate that one of the defining mammalian novelties evolved via domestication of ancient mammalian transposable elements into hormone-responsive regulatory elements throughout the genome. Examination of histone modification and DNAse hypersensitivity in decidualized dESC
Project description:The Zygnematophyceae are the closest algal relatives of land plants and hence interesting to understand land plant evolution. Species of the genus Serritaenia have an aerophytic lifestyle and form colorful, mucilaginous capsules, which surround the cells and block harmful solar radiation. Under laboratory conditions the production of this “sunscreen mucilage” can be induced by ultraviolet B radiation. The present dataset reveals insights into the cellular reaction of this alga to UV radiation (a major stressor in terrestrial habitats) and allows for comparisons with other algae and land plants to draw evolutionary conclusions.
Project description:Developmental gene function is conserved over deep time, but similar cis-regulatory sequence conservation is rarely found. However, rapid sequence turnover, paleopolyploidy, structural variation, and limited phylogenomic sampling have impeded conserved non-coding sequence (CNS) discovery. Using Conservatory, an algorithm that leverages microsynteny and iterative alignments to map CNS-gene associations over evolution, we uncovered ~2.3M CNSs, including over 3,000 predating angiosperms, from 284 plant species spanning 400 million years of diversification. Ancient CNSs were enriched near developmental regulators, and mutagenizing those near HOMEOBOX genes produced strong phenotypes. Tracing CNS evolution uncovered key principles: CNS spacing varies, but order is conserved; genomic rearrangements form new CNS-gene associations; and ancient CNSs are preferentially retained among paralogs but often are lost as cohorts or evolve into lineage-specific CNSs.