Project description:We constructed seven small RNA libraries of Rhizoctonia solani AG1 IA and sequenced using Illumina GA II. The seven samples include mycelium cultured on PDA without rice incubated, 6 different stages at 10 hours (10h), 18h, 24h, 32h, 48h and 72h spanning the Rhizoctonia solani AG1 strains infection rice. We identified miRNA-like small RNAs (milRNAs) using MIREAP and mirdeep2. The milRNAs were used for further analysis of interactions between milRNA and mRNA that may involve in plant-infection.
Project description:Analysis of RNA expression of Rhizoctonia solani AG1 IA. mRNA-seq of R. solani AG1 IA at 6 timepoints during the plant infection were sequenced. Cufflinks was used for calculating expected fragments per kilobase of transcript per million fragments sequenced (FPKM) values. Expression and regulation were identified. Analysis provides suggestion for discovering novel effectors and understanding pathogen factors.
Project description:Analysis of RNA expression of Rhizoctonia solani AG1 IA. mRNA-seq of R. solani AG1 IA at 6 timepoints during the plant infection were sequenced. Cufflinks was used for calculating expected fragments per kilobase of transcript per million fragments sequenced (FPKM) values. Expression and regulation were identified. Analysis provides suggestion for discovering novel effectors and understanding pathogen factors. Sequencing mRNA-seq from disease lesions at 10 hour, 18 hour, 24 hour, 32 hour, 48 hour and 72 hour after inoculation to analysis the expression and identify pathogen factors.
Project description:Plants are continuously infected by various pathogens throughout their lifecycle. Previous studies have reported that the expression of Class III acyl-CoA-binding proteins (ACBPs) such as the Arabidopsis ACBP3 and rice ACBP5 were induced by pathogen infection. Transgenic Arabidopsis AtACBP3-overexpressors (AtACBP3-OEs) displayed enhanced protection against the bacterial biotroph, Pseudomonas syringae, although they became susceptible to the fungal necrotroph Botrytis cinerea. A Class III ACBP from a monocot, rice (Oryza sativa) OsACBP5 was overexpressed in the dicot Arabidopsis. The resultant transgenic Arabidopsis lines conferred resistance not only to the bacterial biotroph P. syringae but to fungal necrotrophs (Rhizoctonia solani, B. cinerea, Alternaria brassicicola) and a hemibiotroph, (Colletotrichum siamense). Changes in protein expression in R. solani-infected Arabidopsis OsACBP5-overexpressors (OsACBP5-OEs) were demonstrated using proteomic analysis. Biotic stress-related proteins including cell wall-related proteins such as FASCILIN-LIKE ARABINOGALACTAN-PROTEIN10, LEUCINE-RICH REPEAT EXTENSIN-LIKE PROTEINS, XYLOGLUCAN ENDOTRANSGLUCOSYLASE/HYDROLASE PROTEIN4 and PECTINESTERASE INHIBITOR18; proteins associated with glucosinolate degradation including GDSL-LIKE LIPASE23, EPITHIOSPECIFIER MODIFIER1, MYROSINASE1, MYROSINASE2 and NITRILASE1; as well as a protein involved in jasmonate biosynthesis, ALLENE OXIDE CYCLASE2, were induced in OsACBP5-OEs upon R. solani infection. These results indicated that upregulation of these proteins in OsACBP5-OEs conferred protection against various plant pathogens.
Project description:Rhizoctonia solani is a nectrotrophic fungal pathogen that causes billions of dollars of damage to agriculture worldwide and infects a broad host range including wheat, rice, potato and legumes. In this study we identify wheat genes that are differentially expressed in response to the R. solani isolate, AG8-1, using microarray technology. A significant number of wheat genes identified in this screen were involved in ROS production and redox regulation. Levels of ROS species were increased in wheat root tissue following R. solani infection as determined by NBT, DAB and titanium sulphate measurements/stainings. Pathogen/ROS related genes from R. solani were also tested for expression patterns upon wheat infection. TmpL, a R. solani gene homologous to a gene associated with ROS regulation in Alternaria brassicicola, and OAH, a R. solani gene homologous to oxaloacetate acetylhydrolase which has been shown to produce oxalic acid in Sclerotinia sclerotiorum, were highly induced in R.solani when infecting wheat. We speculate that the wheat germin-like protein (GLP) is induced to inactivate the oxalic acid that is produced by the R. solani OAH. infected vs mock-infected seedlings, 3 biological replicates
Project description:To investigate the potential role in mycoparasitism, microarrays were used to examine T. atroviride transcript levels when confronted with a potential prey (the plant pathogen Rhizoctonia solani) before contact, during first physical contact and during overgrowth of the host.
Project description:To investigate the potential role in mycoparasitism, microarrays were used to examine T. reesei transcript levels when confronted with a potential prey (the plant pathogen Rhizoctonia solani) before contact, during first physical contact and during overgrowth of the host.
Project description:Rhizoctonia solani is an economically important soil-borne necrotrophic fungal pathogen, with a broad host range and for which little effective resistance exists in crop plants. Arabidopsis is resistant to the R. solani AG8 isolate but susceptible to R. solani AG2-1. Affymetrix microarray analysis was performed to determine genes that are affected in common and specifically by AG8 and AG2-1. 3 biological samples were taken from 3 treatments: non-infected control, R. solani AG8 infection and R. solani AG2-1 infection.
Project description:Rhizoctonia solani is an important root infecting pathogen of a range of food staples worldwide including wheat, rice, maize, soybean, potato and others. Conventional resistance breeding strategies are hindered by the absence of tractable genetic resistance in any crop host. Understanding the biology and pathogenicity mechanisms of this fungus is important for addressing these disease issues however, little is known about how R. solani causes disease. This study capitalises on recent genomic studies by applying mass spectrometry based proteomics to identify soluble, membrane-bound and culture filtrate proteins produced under wheat infection and vegetative growth conditions. Many of the proteins found in the culture filtrate had predicted functions relating to modification of the plant cell wall, a major activity required for pathogenesis on the plant host, including a number found only under infection conditions. Other infection related proteins included a high proportion of proteins with redox associated functions and many novel proteins without functional classification.