Project description:Mania is a serious neuropsychiatric condition associated with significant morbidity and mortality. Previous studies have suggested that environmental exposures can contribute to mania pathogenesis. We measured dietary exposures in a cohort of individuals with mania and other psychiatric disorders as well as in control individual without a psychiatric disorder. We found that a history of eating nitrated dry cured meat, but not other meat or fish products, was strongly and independently associated with current mania (adjusted odds ratio 3.49, 95% confidence interval (CI) 2.24-5.45, p<8.97x 10-8). Lower odds of association were found between eating nitrated dry cured meat and other psychiatric disorders. We further found that the feeding of meat preparations with added nitrate to rats resulted in alterations in behavior and changes in intestinal microbiota. Rats fed diets with added nitrate also showed alterations of brain pathways dysregulated in mania. These findings may lead to new methods for preventing mania and for developing novel therapeutic interventions
2018-08-18 | GSE112510 | GEO
Project description:Meat Dry-aging Microbiome
| PRJNA823742 | ENA
Project description:Shotgun metagenomics in dry-aged meat
| PRJNA1052994 | ENA
Project description:16s rRNA sequencing analysis of dry cured hams microbiota
Project description:Oxygen and carbon dioxide are common protective gases used in modified atmosphere packaging (MAP) of meat. Within the package, they selectively suppress members of the spoilage microbiome, reshaping it to adapted species concomitantly growing upon MAP. Thus, this species must exhibit adaptation mechanisms to withstand the inhibitory effect of carbon dioxide and oxygen, and cope with selective nutrition on MAP meat. In order to uncover these mechanisms, the typical representative meat-spoiling bacteria Brochothrix (B.) thermosphacta TMW2.2101 and four lactic acid bacteria (LAB) Carnobacterium (C.) divergens TMW2.1577, C. maltaromaticum TMW2.1581, Leuconostoc (L.) gelidum subsp. gelidum TMW2.1618 and L. gelidum subsp. gasicomitatum TMW2.1619 were grown in a meat simulation medium under a controlled, sterile environment, aerated constantly with either air, 100%_N2, 30%_CO2/70%_O2 or 30%_CO2/70%_N2. Growth dynamics were monitored and a label-free quantitative mass spectrometric approach was employed to determine changes within the bacterial proteomes in response to the different gas atmospheres. Revealed bacterial tolerance to modified atmospheres (MA) comprise two possible scenarios: Either bacteria were intrinsically adapted to MA, exhibiting no proteomic regulation of enzymes (L. gelidum subsp. gelidum and gasicomitatum) or, tolerance was provided by varying specific metabolic adaptation (B. thermosphacta, C. divergens, C. maltaromaticum). In detail, metabolic adaptation mechanisms to oxygen comprised an enhanced oxidative stress reduction response, adjustment of the pyruvate metabolism and catabolic oxygen consuming reactions. Adaptation to carbon dioxide was characterized by an upregulation of proteins involved in intracellular pH homeostasis, maintenance of osmotic balance and alteration of the fatty acid composition of the cell membrane. We furthermore predict species-specific strategies for different and preferential carbon source utilization enabling a non-competitive coexistence on meat and resulting in a synergistic spoilage. We conclude that a gas atmosphere containing 30%_CO2/70%_O2 has no inhibitory effect on the analyzed prominent meat-spoiling bacteria whereas 30%_CO2/70%_N2 predictively inhibits C. divergens TMW21577 and B. thermosphacta TMW2.2101 but not the other three species. This gives a mechanistically explanation of their acknowledged status as typical spoilage organisms on packaged meats.
Project description:Staphylococcus xylosus is used as starter culture for sausage fermentation for a long time but the molecular mechanisms for its adaptation in meat remained unknown. A global transcriptomic approach was carried out to determine these molecular mechanisms. S. xylosus modulated the expression of about 30% of the total genes during its growth and survival in the meat model. The expression of many genes encoding enzymes involved in glucose and lactate catabolism was up regulated. In parallel, genes encoding transport of peptides and peptidases that could furnish amino acids were up expressed and thus concomitantly a lot of genes involved in amino acids synthesis were down regulated. Finally S. xylosus responded to salt added in the meat model by over expressing genes involved in transport and synthesis of osmoprotectants, Na+ and H+ extrusion and in production of energy through the F0F1-ATPase. Microarray was used to evaluate modification in the transcriptome of S. xylosus C2a strain in the inoculum (Mx) or in meat (V). Three biological replicates were collected on separate days for samples and labelled following a dye-switch design; for each condition one labeling in Cy3 and one in Cy5.
Project description:Staphylococcus xylosus is used as starter culture for sausage fermentation for a long time but the molecular mechanisms for its adaptation in meat remained unknown. A global transcriptomic approach was carried out to determine these molecular mechanisms. S. xylosus modulated the expression of about 30% of the total genes during its growth and survival in the meat model. The expression of many genes encoding enzymes involved in glucose and lactate catabolism was up regulated. In parallel, genes encoding transport of peptides and peptidases that could furnish amino acids were up expressed and thus concomitantly a lot of genes involved in amino acids synthesis were down regulated. Finally S. xylosus responded to salt added in the meat model by over expressing genes involved in transport and synthesis of osmoprotectants, Na+ and H+ extrusion and in production of energy through the F0F1-ATPase.
Project description:Penicillium digitatum is the pathogen of Green mold in Postharvest citrus. After inoculating Penicillium digitatum into the wound of citrus to infect it, transcriptome sequencing was carried out and compared with the results of transcriptome sequencing of Penicillium digitatum before inoculation in order to screen the differentially expressed genes and reveal its infection mechanism.
Project description:Transcriptomic analysis of fungus Penicillium decumbens and brlA deletion strains in liquid medium and solid medium respectivelly Examination of differential gene expressions by Penicillium decumbens strains 114-2 and brlA deletion stains in liquid medium and solid medium