Project description:Colonic gene expression profiles of mice with DSS-induced colitis treated with apple peel polyphenolic extract Four-condition experiment: control, DSS-induced colitis, and mice treated with DAPP (two different doses (200 and 400 mg/kg/day) before or during induction and development of DSS-induced colitis.
Project description:We performed Illumina sequencing of sRNA libraries prepared from juvenile and reproductive phase buds from the apple trees. A large number of sRNAs exemplified by 33 previously annotated miRNAs and 6 novel members displayed significant differential expression (DE) patterns in juvenile and reproductive stages. The study provides new insight into our understanding of fundamental mechanism of poorly studied phase transitions in apple and other woody plants and important resource for future in-depth research in the apple development.
Project description:Human volunteers (N=143; 98 females and 45 males; aged 18-45 years) consumed one litre of blueberry-apple juice per day for four weeks. Before and after the intervention blood was drawn and lymphocytes were isolated for subsequent RNA isolation. Each participant acted as his own control.
Project description:Fire blight (FB) is a bacterial disease affecting plants from Rosaceae family, including apple and pear. FB develops after the infection of Erwinia amylovora, gram-negative enterobacterium, and results in burnt-like damages and wilting, which can affect all organs of the plant. Although the mechanisms underlying disease response in apples are not elucidated yet, it has been well described that FB resistance depends on the rootstock type. The main objective of this work was to identify miRNAs involved in response to bacterial infection in order to better explain apple defense mechanisms against fire blight disease. We performed deep sequencing of eighteen small RNA libraries obtained from inoculated and non-inoculated Gala apple leaves. 233 novel plant mature miRNAs were identified together with their targets and potential role in response to bacterial infection. We identify three apple miRNAs responding to inoculation (mdm-miR168a,b, mdm-miR194C and mdm-miR1392C) as well as miRNAs reacting to bacterial infection in a rootstock-specific manner (miR395 family). Our results provide insights into the mechanisms of fire blight resistance in apple.
Project description:miRNAs are key players in multiple biological processes, therefore analysis and characterization of these small regulatory RNAs is a critical step towards better understanding of animal and plant biology. In apple (Malus domestica) two hundred microRNAs are known, which most probably represents only a fraction of miRNAome diversity. As a result, more effort is required to better annotate miRNAs and their functions in this economically important species. We performed deep sequencing of twelve small RNA libraries obtained for fire blight resistant and fire blight sensitive trees. In the sequencing results we identified 116 novel microRNAs and confirmed a majority of previously reported apple miRNAs. We then experimentally verified selected candidates with RT-PCR and stem-loop qPCR and performed differential expression analysis. Finally, we identified and characterized putative targets of all known apple miRNAs. In this study we considerably expand the apple miRNAome by identifying and characterizing dozens of novel microRNAs. Moreover, our data suggests that apple microRNAs might be considered as regulators and markers of fire blight resistance.
Project description:In this study, we generated a novel nuclear-localized red fluorescence knock-in reporter allele (Ins2.Apple) for mouse pancreatic beta-cells. Beta-cells were isolated by FACS from 60-day-old mice, segregated by sex, and RNA-sequencing was performed to assess sex-specific differences in beta-cell gene expression profiles. We also isolated beta-cells (by FACS) from MIP-GFP mice at 60 days of age. RNA-sequencing was performed, and was compared to that of Ins2.Apple beta cells, to assess gene expression changes brought on by the presence of the MIP-GFP transgene.
Project description:Our data showed that lipid and glucose metabolic pathways genes were expressed at higher levels in gluteofemoral adipocyte fraction in pears, while genes associated with inflammation were higher in both abdominal and gluteofemoral apple adipocyte fraction. Gluteofemoral adipocyte chromatin from pear-shaped women contained a significantly higher number of differentially open ATAC-seq peaks relative to chromatin from the apple-shaped gluteofemoral adipocytes. In contrast, abdominal adipocyte chromatin openness showed few differences between apple and pear-shaped women. We revealed a correlation between gene transcription and open chromatin at the proximity of the TSS of some of the differentially expressed genes.
Project description:Winter dormancy is an adaptative mechanism that temperate and boreal trees have developed to protect their meristems against low temperatures. In apple trees (Malus domestica), cold temperatures induce bud dormancy at the end of summer/beginning of the fall. Apple buds stay dormant during winter until they are exposed to a period of cold, after which they can resume growth (budbreak) and initiate flowering in response to warm temperatures in spring. It is well-known that small RNAs modulate temperature responses in many plant species, but however, how small RNAs are involved in genetic networks of temperature-mediated dormancy control in fruit tree species remains unclear. Here, we have made use of a recently developed ARGONAUTE (AGO)-purification technique to isolate small RNAs from apple buds. A small RNA-seq experiment resulted in the identification of small RNAs that change their pattern of expression in apple buds during dormancy.