Project description:Here, we explore the impact of rearing zebrafish embryos in the absence of microbes on early neural development as well as investigate whether any potential changes can be rescued with treatment of metabolites derived from the zebrafish gut microbiota. RNA was extracted from a pool of five heads for each treatment at long-pec stage (2 days post fertilization) and sequenced at a depth of 80-100 million reads per sample. We identified 361 genes significantly down regulated in GF embryos compared to conventionally raised embryos via RNA-Seq analysis. Of these, 42 were rescued with the treatment of zebrafish gut-derived metabolites to GF embryos. Gene ontology analysis revealed that these genes are involved in prominent neurodevelopmental pathways including transcriptional regulation and Wnt signalling.
Project description:RNA-seq analysis of conventionally raised zebrafish larvae compared to germ-free zebrafish larvae and germ-free larvae treated with zebrafish metabolites.
Project description:Vertebrates are colonized at birth by complex microbial communities (microbiota) that influence diverse aspects of host biology. We have used a functional genomics approach to identify zebrafish genes that are differentially expressed in response to the microbiota. We assessed RNA expression profiles from zebrafish larvae at 6 days post-fertilization (dpf) that were either raised continuously in the absence of any microorganism (germ-free or GF), or raised GF through 3dpf then colonized with a normal zebrafish microbiota (conventionalized or CONVD).
Project description:Purpose: Gut microbiota-derived metabolites play a pivotal role in the maintenance of local gut homeostasis and can even induce systemic effects via accumulation in the bloodstream. Here, we demonstrate that mono-colonization of germ-free (GF) mice with Clostridium sporogenes protects mice from inflamation and death induced by DSS colitis. Method: 8-12-week-old male mice (GF, SPF and GF colonized with C. sporogenes (CS)) were treated with 2.5% DSS in drinking water for 5 days and colon tissue was isolated on day 7. RNA was isolated from the colon tissue and RNA sequenzing was performed. Results: Mono-colonization of GF mice with Clostridium sporogenes protected the mice from DSS colitis induced death, while producing high amounts of indole-3-propionic acid (IPA), branched chain (BCFA) and short-chain (SCFA) fatty acids. In comparison to CS mice, SPF mice showed much higher levels of inflammatory related genes and a worse histological score. Conclusion: Histological stainings and the RNAseq both showed high levels of protection of C. sporogenes colonized mice in colitis, compared to SPF and GF animals. The data provide evidence for a therapeutic potential of C. sporogenes for IBD patients.
Project description:The gut microbiota exerts profound influence on poultry immunity and metabolism through mechanisms that yet need to be elucidated. Here we used conventional and germ-free chickens to explore the influence of the gut microbiota on transcriptomic along the gut-lung axis in poultry. Our results demonstrated a differential regulation of genes associated with innate immunity and metabolism in the spleen of germ-free birds.
Project description:The gut microbiota exerts profound influence on poultry immunity and metabolism through mechanisms that yet need to be elucidated. Here we used conventional and germ-free chickens to explore the influence of the gut microbiota on transcriptomic along the gut-lung axis in poultry. Our results demonstrated a differential regulation of genes associated with innate immunity and metabolism in the lungs of germ-free birds.
Project description:The gut microbiota exerts profound influence on poultry immunity and metabolism through mechanisms that yet need to be elucidated. Here we used conventional and germ-free chickens to explore the influence of the gut microbiota on transcriptomic along the gut-lung axis in poultry. Our results demonstrated a differential regulation of genes associated with innate immunity and metabolism in the caeca of germ-free birds.
Project description:The integration of cell metabolism with signalling pathways, transcription factor networks and epigenetic mediators is critical in coordinating molecular and cellular events during embryogenesis. Induced pluripotent stem cells (IPSCs) are an established model for embryogenesis, germ layer specification and cell lineage differentiation, advancing the study of human embryonic development and the translation of innovations in drug discovery, disease modelling and cell-based therapies. The metabolic regulation of IPSC pluripotency is mediated by balancing glycolysis and oxidative phosphorylation, but there is a paucity of data regarding the influence of individual metabolite changes during cell lineage differentiation. We used <sup>1</sup>H NMR metabolite fingerprinting and footprinting to monitor metabolite levels as IPSCs are directed in a three-stage protocol through primitive streak/mesendoderm, mesoderm and chondrogenic populations. Metabolite changes were associated with central metabolism, with aerobic glycolysis predominant in IPSC, elevated oxidative phosphorylation during differentiation and fatty acid oxidation and ketone body use in chondrogenic cells. Metabolites were also implicated in the epigenetic regulation of pluripotency, cell signalling and biosynthetic pathways. Our results show that <sup>1</sup>H NMR metabolomics is an effective tool for monitoring metabolite changes during the differentiation of pluripotent cells with implications on optimising media and environmental parameters for the study of embryogenesis and translational applications.
Project description:Gut microbiota and their metabolites influence host gene expression and physiological status through diverse mechanisms. Here we investigate how gut microbiota and their metabolites impact host's mRNA m6A epitranscriptome in various antibiotic-induced microbiota dysbiosis models. With multi-omics analysis, we find that the imbalance of gut microbiota can rewire host mRNA m6A epitranscriptomic profiles in brain, liver and intestine. We further explore the underlying mechanisms regulating host mRNA m6A methylome by depleting the microbiota with ampicillin. Metabolomic profiling shows that cholic acids are the main down-regulated metabolites with Firmicutes as the most significantly reduced genus in ampicillin-treated mice comparing to untreated mice. Fecal microbiota transplantations in germ-free mice and metabolites supplementations in cells verify that cholic acids are associated with host mRNA m6A epitranscriptomic rewiring. Collectively, this study employs an integrative multi-omics analysis to demonstrate the impact of gut microbiota dysbiosis on host mRNA m6A epitranscriptomic landscape via cholic acid metabolism.
Project description:Gut microbiota and their metabolites influence host gene expression and physiological status through diverse mechanisms. Here we investigate how gut microbiota and their metabolites impact host′s mRNA m6A epitranscriptome in various antibiotic-induced microbiota dysbiosis models. With multi-omics analysis, we find that the imbalance of gut microbiota can rewire host mRNA m6A epitranscriptomic profiles in brain, liver and intestine. We further explore the underlying mechanisms regulating host mRNA m6A methylome by depleting the microbiota with ampicillin. Metabolomic profiling shows that cholic acids are the main down-regulated metabolites with Firmicutes as the most significantly reduced genus in ampicillin-treated mice comparing to untreated mice. Fecal microbiota transplantations in germ-free mice and metabolites supplementations in cells verify that cholic acids are associated with host mRNA m6A epitranscriptomic rewiring. Collectively, this study employs an integrative multi-omics analysis to demonstrate the impact of gut microbiota dysbiosis on host mRNA m6A epitranscriptomic landscape via cholic acid metabolism.