Project description:Staphylococcus aureus (S. aureus) has already to be one of the most commonly identified bacteria that cause food poisoning. S. aureus colonization in humans can cause serious infections, toxinoses and life threatening diseases. The bacteriocin nisin has been extensively used as potential natural preservative in the food industry, but the overall transcriptional response mechanisms of S. aureus to nisin are still poorly understood. To detect the possible molecular mechanism of nisin against S. aureus, Affymetrix GeneChips were used to determine the global comparative transcription of S. aureus cells triggered by treatment with sub-inhibitory concentrations of nisin. Staphylococcus aureus planktonic cells were exposed for 60 minutes to nisin at concentration of 4 M-NM-<g/ml (1/2M-CM-^W MIC). 2 samples including 2 control samples are analyzed.
Project description:Staphylococcus aureus (S. aureus) has already to be one of the most commonly identified bacteria that cause food poisoning. S. aureus colonization in humans can cause serious infections, toxinoses and life threatening diseases. The bacteriocin nisin has been extensively used as potential natural preservative in the food industry, but the overall transcriptional response mechanisms of S. aureus to nisin are still poorly understood. To detect the possible molecular mechanism of nisin against S. aureus, Affymetrix GeneChips were used to determine the global comparative transcription of S. aureus cells triggered by treatment with sub-inhibitory concentrations of nisin.
2015-02-10 | GSE65750 | GEO
Project description:Genomic analysis,antibiotic resistance and virulence of Staphylococcus aureus isolated from retail food and food outbreaks: a potential food and public concern
Project description:We used the next generation sequencing method to profile gene expression changes in cutaneous T effectors isolated from mice with early colonization with Staphylococcus aureus or Staphylococcus epidermidis
Project description:Transcriptional profiling of C. elegans young adult worms exposed to pathogen Staphylococcus aureus for 4 hours versus age-matched worms exposed to onctrol lab food E. coli OP50. The goal was to identify genes regulated in response to pathogen. The broader goal of study was to study evolution of pathogen response by comparing this expression profile to that obtained by exposing the nematode Pristionchus pacificus to the same pathogen. Other experiments which are a part of this study include expression profiling of C. elegans and P. pacificus on other pathogens including Staphylococcus aureus, Serratia marcescens, Xenorhabdus nematophila. Keywords: Expression profiling by array One-condition experiments. C. elegans young adults: Exposed to Staphylococcus aureus versus exposed to E. coli OP50 : 4 hours. 4 biological replicates for each condition, including 2 dye-swaps.
Project description:To determine if significant genomic changes are associated with the development of vancomycin intermediate Staphylococcus aureus, genomic DNA microarrays were performed to compare the initial vancomycin susceptible Staphylococcus aureus (VSSA) and a related vancomycin intermediate Staphylococcus aureus (VISA) isolate from five unique patients (five isolate pairs). Keywords: comparative genomic hybridization
Project description:Transcriptional profiling of C. elegans young adult worms exposed to pathogen Staphylococcus aureus for 4 hours versus age-matched worms exposed to control lab food E. coli OP50. The goal was to identify genes regulated in response to pathogen. The broader goal of study was to study evolution of pathogen response by comparing this expression profile to that obtained by exposing the nematode Pristionchus pacificus to the same pathogen. Other experiments which are a part of this study include expression profiling of C. elegans and P. pacificus on other pathogens including Staphylococcus aureus, Serratia marcescens, Xenorhabdus nematophila. Keywords: Expression profiling by array
Project description:Staphylococcus aureus is one of the most important pathogens in humans and animals, multiply resistant strains are increasingly widespread, new agents are needed for the treatment of S. aureus. Rhein, a natural plant product, has potential antimicrobial activity against Staphylococcus aureus. We employed Affymetrix Staphylococcus aureus GeneChipsTM arrays to investigate the global transcriptional profiling of Staphylococcus aureus ATCC25923 treated with rhein. Results provided insight into mechanisms involved in rhein - Staphylococcus aureus interactions. Keywords: rhein response
Project description:Staphylococcus aureus is an important food poisoning bacterium. In food preservation, acidification is a well-known method. Permeant weak organic acids, like lactic and acetic acids, are known to be more effective against bacteria than inorganic strong acids (e.g., HCl). Growth experiments and metabolic and transcriptional analyses were used to determine the responses of a food pathogenic S. aureus strain exposed to lactic acid, acetic acid, and HCl at pH 4.5. Lactic and acetic acid stress induced a slower transcriptional response and large variations in growth patterns compared with the responses induced by HCl. In cultures acidified with lactic acid, the pH of the medium gradually increased to 7.5 during growth, while no such increase was observed for bacteria exposed to acetic acid or HCl. Staphylococcus aureus increased the pH in the medium mainly through accumulation of ammonium and the removal of acid groups, resulting in increased production of diacetyl (2,3-butanedione) and pyrazines. The results showed flexible and versatile responses of S. aureus to different types of acid stress. As measured by growth inhibition, permeant organic acid stress introduced severe stress compared with the stress caused by HCl. Cells exposed to lactic acid showed specific mechanisms of action in addition to sharing many of the mechanisms induced by HCl stress. Data is also available from http://bugs.sgul.ac.uk/E-BUGS-87
Project description:Staphylococcus aureus (S. aureus) is an important human and animal pathogen, multiply resistant strains are increasingly widespread, new agents are needed for the treatment of S. aureus. sodium houttuyfonate has potent antimicrobial activity against S. aureus. We employed Affymetrix Staphylococcus aureus GeneChipsTM arrays to investigate the global transcriptional profiling of Staphylococcus aureus ATCC25923 treated with sodium houttuyfonate. Keywords: gene expression array-based, count