Project description:Varicella Zoster Virus (VZV) is a skin-tropic virus that infects epidermal keratinocytes and causes chickenpox. Although common, VZV infection can be life-threatening particularly in the immunocompromised. Therefore, understanding VZV-keratinocyte interactions is important to find new treatments beyond vaccination and anti-viral drugs. In VZV- infected skin, Kallikrein 6 (KLK6), and the ubiquitin-ligase MDM2 are up-regulated concomitant with Keratin 10 (K10) down-regulation. MDM2 binds to K10 targeting it for degradation via the ubiquitin-proteasome pathway. Preventing K10 degradation reduced VZV propagation in culture and prevented epidermal disruption in skin explants. K10 knockdown induced expression of the nuclear receptor subfamily 4, group A, member 1 (NR4A1) and enhanced viral propagation in culture. NR4A1 knockdown prevented viral propagation in culture, reduced LC3 levels and increased LAMP2 expression. We therefore describe a novel drug-able pathway whereby MDM2 ubiquitinates and degrades K10 increasing NR4A1 expression allowing VZV replication and propagation.
Project description:Varicella pneumonia is the most common and severe complication of primary varicella-zoster virus (VZV) infection in adults. Pathogenesis of varicella pneumonia is largely unknown, mainly due to limited availability of clinical specimens and lack of appropriate VZV animal models. Simian varicella virus (SVV) infection of nonhuman primates closely recapitulates clinical and pathogenic features of human VZV disease. This study aimed to elucidate the virus and host factors that contribute to the pathogenesis of varicella pneumonia. The deposited data present changes in gene expression in the lung of SVV-infected cynomolgus macaques (Macaca fascicularis) at 3, 6 and 9 days after infection, and mock-infected control macaques at 3 days after infection.
Project description:In this study, we screened the differentially expressed genes (DEGs) in SH-SY5Y cells with Varicella-Zoster Virus-Infected using RNAseq technique to explore the molecular mechanisms of Herpes zoster pain
Project description:Varicella-zoster virus (VZV), an alphaherpesvirus, causes chickenpox (varicella) in young children with an annual minimum of 140 million new cases and herpes zoster in senior, a painful and debilitating disease with 3-5‰ incidence. A complex structural transcriptome of VZV, which numerous novel transcripts, transcript isoforms, and unknown splice events are found during cell infection. Circular RNA (circRNA), a newly important component of the transcriptome, is increasing discoveries of circRNA function in mammalian cells. However, VZV encoded circRNA remains unexplored. The code used in this study and extended data are available from the GitHub repository (https://github.com/ShaominYang/VZV_circRNA)
Project description:Varicella-zoster virus (VZV), an alphaherpesvirus, causes chickenpox (varicella) in young children with an annual minimum of 140 million new cases and herpes zoster in senior, a painful and debilitating disease with 3-5‰ incidence. A complex structural transcriptome of VZV, which numerous novel transcripts, transcript isoforms, and unknown splice events are found during cell infection. Circular RNA (circRNA), a newly important component of the transcriptome, is increasing discoveries of circRNA function in mammalian cells. However, VZV encoded circRNA remains unexplored. In this study we demonstration that VZV derived circRNAs are biologically functional and contributed to viral pathogenesis. Using deep RNA-seq following RNase R treatment, we identified and charactered 35, 076 and 54 human and VZV pOka strain circRNAs respectively from VZV infected neuroblastoma cell (SH-SY5Y).
Project description:The highly conserved herpesvirus glycoprotein complex, gB/gH-gL, mediates membrane fusion during virion entry and cell-cell fusion. Varicella-zoster virus (VZV) characteristically forms multi-nucleated cells, or syncytia, during the infection of human tissues but little is known about this process. The cytoplasmic domain of VZV gB (gBcyt) has been implicated in cell-cell fusion regulation because a gB[Y881F] substitution causes hyperfusion. The gBcyt regulation is necessary for VZV pathogenesis as the hyperfusogenic mutant gB[Y881F] is severely attenuated in human skin xenografts. In this study, gBcyt regulated fusion was investigated by comparing melanoma cells infected with wild type-like VZV or hyperfusogenic mutants. The gB[Y881F] mutant exhibited dramatically accelerated syncytia formation in melanoma cells caused by fusion of infected cells with many uninfected cells, increased cytoskeleton reorganization and rapid displacement of nuclei to dense central structures when compared to pOka using live cell confocal microscopy. VZV and human transcriptomes were concurrently investigated using RNA-seq to identify viral and cellular responses induced when the gBcyt regulation was disrupted by the gB[Y881F] substitution. The expression of four vital VZV genes, ORF61 and glycoproteins, gC, gE and gI, was significantly reduced at 36 hours post infection for the hyperfusogenic mutants. Importantly, hierarchical clustering demonstrated an association of differential gene expression with dysregulated gBcyt-mediated fusion. A subset of Ras GTPase genes linked to membrane remodeling were upregulated in cells infected with the hyperfusogenic mutants. These data implicate the gBcyt in the regulation gB fusion function that, if unmodulated, triggers cellular processes leading to hyperfusion that attenuates VZV infection.