Project description:Ctenophores’ amazing capacity of regeneration has fascinated biologists for centuries. The morphological features of ctenophore regeneration have been documented, but the molecular and cellular components behind this phenomenon have remained a mystery. Here, next generation sequencing technologies and transcriptomic analysis are used to investigate the regeneration dynamics in the ctenophore Mnemiopsis leidyi. The resulting data identify multiple signaling pathways that might be involved in ctenophore regeneration. These include evolutionarily conserved pathways, such as Ca2+-dependent and MAP-kinase signaling pathways, that are up regulated during regeneration, as well as genes involved in energetics and cytoskeleton function. The data also show evidence for involvement of dozens of ctenophore specific secretory molecules, their receptors and processing components that are important signal messengers in regeneration. A unique subset of transcription factors were also found to be involved in regeneration which may be upstream regulators of those signaling pathways. In summary, our data indicate that the strategies which ctenophores employ to regenerate use a unique combination of evolutionarily conserved and ctenophore specific signaling components. These data provide novel insights into the mechanisms of regeneration in the earliest branching taxa in Metazoa.
Project description:Rapid Acceleration of Diagnostics - Digital Health (RADx-DH): Covidseeker and COVID-19 Citizen Science: Leveraging Citizen Science and Real-Time Geospatial Temporal Mobile Data for Digital Contact Tracing and SARS-CoV-2 Hotspotting
Project description:Rapid Acceleration of Diagnostics - Digital Health (RADx-DH): Covidseeker and COVID-19 Citizen Science: Leveraging Citizen Science and Real-Time Geospatial Temporal Mobile Data for Digital Contact Tracing and SARS-CoV-2 Hotspotting
Project description:The Isala Citizen Science Project, is named after the first female doctor in Belgium, Isala Van Diest (1842-1916). In a co-creative way, volunteers provided samples and data, proposed research objectives and survey questions, and helped to disseminate and interpret the objectives and results through different media platforms, jointly breaking taboos on women’s and vaginal health. In Flow 1, we collected a single sample from a cross-section of the population, characterized the microbiome, and associated it with data collected in questionnaires. Here, we provide extensive sample meta-data for over 3000 women who completed questionnaires on their lifestyle, diet, health, contraceptive use and environment.