Long-read nanopore DNA sequencing can resolve complex intragenic duplication/deletion variants, providing information to enable preimplantation genetic diagnosis
Ontology highlight
ABSTRACT: Nanopore sequencing to resolve an RB1 mutation
Project description:BackgroundThe adoption of massively parallel short-read DNA sequencing methods has greatly expanded the scope and availability of genetic testing for inherited diseases. Indeed, the power of these methods has encouraged the integration of whole genome sequencing, the most comprehensive single approach to genomic analysis, into clinical practice. Despite these advances, diagnostic techniques that incompletely resolve the precise molecular boundaries of pathogenic sequence variants continue to be routinely deployed. This can present a barrier for certain prenatal diagnostic approaches. For example, the pre-referral workup for couples seeking preimplantation genetic diagnosis requires intragenic dosage variants to be characterised at nucleotide resolution.ObjectiveWe sought to assess the use of long-read nanopore sequencing to rapidly characterise an apparent heterozygous RB1 exon 23 deletion that was initially identified by multiplex ligation-dependent probe amplification (MLPA), in a patient with bilateral retinoblastoma.MethodsTarget enrichment was performed by long-range polymerase chain reaction (PCR) amplification prior to Flongle sequencing on a MinION long-read sequencer.ResultsCharacterisation of the deletion breakpoint included an unexpected 85-bp insertion which duplicated RB1 exon 24 (and was undetected by MLPA). The long-read sequence permitted design of a multiplex PCR assay, which confirmed that the mutation arose de novo.ConclusionOur experience demonstrates the diagnostic utility of long-read technology for the precise characterisation of structural variants, and highlights how this technology can be efficiently deployed to enable onward referral to reproductive medicine services.
Project description:BACKGROUND:Kleefstra syndrome is characterized by intellectual disability, muscular hypotonia in childhood and typical facial features. It results from either a microdeletion of or a deleterious sequence variant in the gene euchromatic histone-lysine N-methyltransferase 1 (EHMT1) on chromosome 9q34. RESULTS:We report on a 3-year-old girl with characteristic symptoms of Kleefstra syndrome. Array comparative genomic hybridization analysis revealed a 145 kilobases duplication spanning exons 2 to 10 of EHMT1. Sequence analysis characterized it as an intragenic tandem duplication leading to a frame shift with a premature stop codon in EHMT1. CONCLUSIONS:This is the first description of an intragenic duplication of EHMT1 resulting in Kleefstra syndrome.
Project description:ObjectivesIn a hereditary pancreatitis family from Denmark, we identified a novel intragenic duplication of 9 nucleotides in exon-2 of the human cationic trypsinogen (PRSS1) gene (c.63_71dup) which at the amino-acid level resulted in the insertion of 3 amino acids within the activation peptide of cationic trypsinogen (p.K23_I24insIDK). The aim of the present study was to characterize the effect of this unique genetic alteration on the function of human cationic trypsinogen.MethodsWild-type and mutant cationic trypsinogens were produced recombinantly and purified to homogeneity. Trypsinogen activation was followed by enzymatic assays and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Trypsinogen secretion was measured from transfected HEK 293T cells.ResultsRecombinant cationic trypsinogen carrying the p.K23_I24insIDK mutation exhibited greater than 10-fold increased autoactivation. Activation by human cathepsin B also was accelerated by 10-fold. Secretion of the p.K23_I24insIDK mutant from transfected cells was diminished, consistent with intracellular autoactivation.ConclusionsThis is the first report of an intragenic duplication within the PRSS1 gene causing hereditary pancreatitis. The accelerated activation of p.K23_I24insIDK by cathepsin B is a unique biochemical property not found in any other pancreatitis-associated trypsinogen mutant. In contrast, the robust autoactivation of the novel mutant confirms the notion that increased autoactivation is a disease-relevant mechanism in hereditary pancreatitis.
Project description:Intracerebral hemorrhage is rare in term born neonates. Besides several non-genetic risk factors, pathogenic variants in COL4A1 and COL4A2 have been described to play a role in the pathophysiology of neonatal intracerebral hemorrhage. To the best of our knowledge, no intragenic COL4A2 duplications have been reported in humans to date. We report a neonate with intracerebral hemorrhage and a de novo intragenic COL4A2 duplication. Although it is not clear yet whether this genetic factor fully explains the clinical phenotype, it may have contributed at least as a risk factor for cerebral hemorrhage. Screening for intragenic COL4A1 and COL4A2 duplications as part of collagen IV diagnostics should be considered as part of the fetal and neonatal work-up for unexplained cerebral hemorrhages and to collect more evidence of the pathogenicity of this genetic mechanism.
Project description:BackgroundKBG syndrome, a rare autosomal disorder characterised by distinctive craniofacial and skeletal features and developmental delay, is caused by haploinsufficiency of the ANKRD11 gene.ResultsHere we describe two siblings with multiple symptoms characteristic of KBG and their mother with a milder phenotype. In the siblings, array-based comparative genomic hybridization (array CGH) identified an intragenic microduplication affecting ANKRD11 that was absent from the parents' array CGH profiles. Microsatellite analysis revealed the maternal origin of the rearrangement and interphase fluorescent in situ hybridization (i-FISH) experiments identified the rearrangement in low-level mosaicism in the mother. Molecular characterisation of the duplication allele demonstrated the presence of two mutant ANKRD11 transcripts containing a premature stop codon and predicting a truncated non-functional protein.ConclusionsSimilarly to deletions and point mutations, this novel pathogenetic rearrangement causes haploinsufficiency of ANKRD11, resulting in KBG syndrome.
Project description:Preimplantation genetic diagnosis (PGD) is a powerful tool to tackle the transmission of monogenic inherited disorders in families carrying the diseases from generation to generation. It currently remains a challenging task, despite PGD having been developed over 25 years ago. The major difficulty is it does not have an easy and general formula for all mutations. Different gene locus needs individualized, customized design to make the diagnosis accurate enough to be applied on PGD, in which the quantity of DNA is scanty, whereas timely laboratory diagnosis is mandatory if fresh embryo transfer is desired occasionally. Indicators for outcome assessment of a successful PGD program include the successful diagnosis rate on blastomeres (Day 3 cleavage-stage embryo biopsy) or trophectoderm cells (Day 5/6 blastocyst biopsy), the implantation rate per embryo transferred, and the livebirth rate per oocyte retrieval cycle. Hemophilia A (HA) is an X-linked recessive bleeding disorder caused by various types of pathological defects in the factor VIII gene (F8). The mutation spectrum of the F8 is complex, according to our previous report, including large segmental intra-gene inversions, large segmental deletions spanning a few exons, point mutations, and total deletion caused by chromosomal structural rearrangements. In this review, the molecular methodologies used to tackle different mutants of the F8 in the PGD of HA are to be explained, and the experiences of successful use of amplification refractory mutation system-quantitative polymerase chain reaction (ARMS-qPCR) and linkage analysis for PGD of HA in our laboratory are also provided.
Project description:Preimplantation genetic diagnosis (PGD) testing is the practice of obtaining a cellular biopsy sample from a developing human oocyte or embryo, acquired via a cycle of in vitro fertilization (IVF); evaluating the genetic composition of this sample; and using this information to determine which embryos will be optimal for subsequent uterine transfer. PGD has become an increasingly useful adjunct to IVF procedures. The ability to provide couples who are known carriers of genetic abnormalities the opportunity to deliver healthy babies has opened a new frontier in reproductive medicine. The purpose of the PGD is enables us to choose which embryos will be implanted into the mother. In the present study 137 families who had undergone IVF at Habib Medical Centre, were enrolled for the PGD analysis. The couple visited the clinic for the sex selection, recurrent fetal loss and with the recurrent IVF failure. 802 embryos were tested by the biopsy method and 512 are found to be normal and 290 were abnormal embryos. In this study only 24% of the embryos were transferred and the remaining was not transferred because of the abnormalities or undesired sex of the embryos. The structural and numerical abnormalities were found to be 16.8%.