Project description:We evaluated linked-read whole genome sequencing (WGS) for detection of structural chromosomal rearrangements in primary samples of varying DNA quality from 12 patients diagnosed with ALL. Linked-read WGS enabled precise, allele-specific, digital karyotyping at a base-pair resolution for a wide range of structural variants including complex rearrangements, aneuploidy assessment and gene deletions. Additional RNA-sequencing and copy number aberrations (CNA) data from Illumina Infinium arrays were also generated and assessed against the linked-read WGS data. RNA-sequencing data was used to support structural chromosomal rearrangements detected in the linked-read WGS data by detecting expressed fusion genes as a consequence of the rearrangements. Illumina Infinium arrays (450k array and/or SNP array) were used to assess CNA status to further support the findings in the linked-read WGS data. The processed CNA data from the primary ALL patient samples has been deposited to GEO. RNA-sequencing, linked-read WGS data, and raw SNP array data from the primary ALL patient samples will not be deposited because the patient/parent consent does not cover depositing data that may be used for large-scale determination of germline variants in a repository. The ALL samples were collected 10-20 years ago from pediatric patients aged 2-15 years, some whom have deceased. The linked-read WGS data and the RNA-sequencing data sets generated in the study are available upon reasonable request from the corresponding author Jessica.Nordlund@medsci.uu.se.
Project description:We evaluated linked-read whole genome sequencing (WGS) for detection of structural chromosomal rearrangements in primary samples of varying DNA quality from 12 patients diagnosed with ALL. Linked-read WGS enabled precise, allele-specific, digital karyotyping at a base-pair resolution for a wide range of structural variants including complex rearrangements, aneuploidy assessment and gene deletions. Additional RNA-sequencing and copy number aberrations (CNA) data from Illumina Infinium arrays were also generated and assessed against the linked-read WGS data. RNA-sequencing data was used to support structural chromosomal rearrangements detected in the linked-read WGS data by detecting expressed fusion genes as a consequence of the rearrangements. Illumina Infinium arrays (450k array and/or SNP array) were used to assess CNA status to further support the findings in the linked-read WGS data. The processed CNA data from the primary ALL patient samples has been deposited to GEO. RNA-sequencing, linked-read WGS data, and raw SNP array data from the primary ALL patient samples will not be deposited because the patient/parent consent does not cover depositing data that may be used for large-scale determination of germline variants in a repository. The ALL samples were collected 10-20 years ago from pediatric patients aged 2-15 years, some whom have deceased. The linked-read WGS data and the RNA-sequencing data sets generated in the study are available upon reasonable request from the corresponding author Jessica.Nordlund@medsci.uu.se.
Project description:We evaluated linked-read whole genome sequencing (WGS) for detection of structural chromosomal rearrangements in primary samples of varying DNA quality from 12 patients diagnosed with ALL. Linked-read WGS enabled precise, allele-specific, digital karyotyping at a base-pair resolution for a wide range of structural variants including complex rearrangements, aneuploidy assessment and gene deletions. Additional RNA-sequencing and copy number aberrations (CNA) data from Illumina Infinium arrays were also generated and assessed against the linked-read WGS data. RNA-sequencing data was used to support structural chromosomal rearrangements detected in the linked-read WGS data by detecting expressed fusion genes as a consequence of the rearrangements. Illumina Infinium arrays (450k array and/or SNP array) were used to assess CNA status to further support the findings in the linked-read WGS data. The processed CNA data from the primary ALL patient samples has been deposited to GEO. RNA-sequencing, linked-read WGS data, and raw SNP array data from the primary ALL patient samples will not be deposited because the patient/parent consent does not cover depositing data that may be used for large-scale determination of germline variants in a repository. The ALL samples were collected 10-20 years ago from pediatric patients aged 2-15 years, some whom have deceased. The linked-read WGS data and the RNA-sequencing data sets generated in the study are available upon reasonable request from the corresponding author Jessica.Nordlund@medsci.uu.se.
Project description:<p>In this study, linked read sequencing was performed on two ovarian metastases and matched normal tissue, from a patient with primary diffuse gastric cancer. Linked read sequencing is a DNA preparation technology whereby high molecular weight molecules of DNA are uniquely barcoded prior to fragmentation and sequencing, thus retaining information about genomic contiguity. This study performed an extended analysis of linked read sequencing data to resolve the complex structures of structural variants in the cancer genomes. Complex structural rearrangements were identified in the genomic region surrounding the known oncogene FGFR2, and the association between FGFR2 and gastric cancer metastasis was demonstrated in an organoid model. </p>
Project description:Medulloblastoma (MB) is the most common type of malignant pediatric brain tumor with group 4 medulloblastomas (G4 MBs) accounting for 40% of cases of medulloblastomas. The molecular mechanisms that underlie this subgroup are still poorly understood. Point mutations are detected in a large number of genes at low incidence per gene while the detection of complex structural variants (SVs) in recurrently affected gene typically requires the application of long-read technologies. Here, we applied linked-read sequencing, which combines the long-range genome information of long-read sequencing with the high base pair accuracy of short read sequencing and very low sample input requirements.