Project description:Microbial autotroph-heterotroph interactions influence biogeochemical cycles on a global scale, but the diversity and complexity of natural systems and their intractability to in situ manipulation make it challenging to elucidate the principles governing these interactions. The study of assembling phototrophic biofilm communities provides a robust means to identify such interactions and evaluate their contributions to the recruitment and maintenance of phylogenetic and functional diversity overtime. To examine primary succession in phototrophic communities, we isolated two unicyanobacterial consortia from the microbial mat in HotLake, Washington, characterizing the membership and metabolic function of each consortium. We then analyzed the spatial structures and quantified the community compositions of their assembling biofilms. The consortia retained the same suite of heterotrophic species, identified as abundant members of the mat and assigned to Alphaproteobacteria, Gammaproteobacteria, and Bacteroidetes. Autotroph growth rates dominated early in assembly, yielding to increasing heterotroph growth rates late in succession. The two consortia exhibited similar assembly patterns, with increasing relative abundances of members from Bacteroidetes and Alphaproteobacteria concurrent with decreasing relative abundances of those from Gamma proteobacteria. Despite these similarities at higher taxonomic levels, the relative abundances of individual heterotrophic species were substantially different in the developing consortial biofilms. This suggests that, although similar niches are created by the cyanobacterial metabolisms, the resulting webs of autotroph-heterotroph and heterotroph-heterotroph interactions are specific to each primary producer. The relative simplicity and tractability of the Hot Lake unicyanobacterial consortia make them useful model systems for deciphering interspecies interactions and assembly principles relevant to natural microbial communities.
Project description:Cryptomonas sp. was grown under phototrophic conditions, glucose supplemented phototrophic conditions and 3 different dissolved organic carbon (DOC) concentrations: 1.5, 30 and 90 mg C l−1. The objective was to study the adaptations that make Cryptomonas sp. thrive under high DOC conditions.
Project description:Here we show that the phytochrome-less chlorophyte Chlamydomonas reinhardtii retains a functional pathway to synthesize the linear tetrapyrrole (bilin) precursor of the phytochrome chromophore. Reverse genetic, metabolic inactivation and bilin rescue experiments establish that this pathway is needed for heme iron acquisition and for the diurnal transition to phototrophic growth. RNA-Seq measurements reveal a bilin-dependent signaling network that is necessary for the heterotrophic to phototrophic transition. These results imply the presence of a novel bilin sensor pathway that may be widely distributed amongst oxygenic photosynthetic organisms.
Project description:Here we show that the phytochrome-less chlorophyte Chlamydomonas reinhardtii retains a functional pathway to synthesize the linear tetrapyrrole (bilin) precursor of the phytochrome chromophore. Reverse genetic, metabolic inactivation and bilin rescue experiments establish that this pathway is needed for heme iron acquisition and for the diurnal transition to phototrophic growth. RNA-Seq measurements reveal a bilin-dependent signaling network that is necessary for the heterotrophic to phototrophic transition. These results imply the presence of a novel bilin sensor pathway that may be widely distributed amongst oxygenic photosynthetic organisms. We isolated RNA from heterotrophic suspension cultures of 4A+ WT and the hmox1 mutant grown in the presence or absence of 0.1 mM BV IXM-NM-1 before and after transfer to low light.
Project description:The H2A variant H2AZ is essential for embryonic development and for proper execution of developmental gene expression programs in embryonic stem cells (ESCs). Divergent regions in H2AZ are likely key for its functional specialization, but we know little about how these differences contribute to chromatin regulation. Here, we show that the extended acidic patch, specifically the three divergent residues in the C-terminal docking domain, is necessary for lineage commitment during ESC differentiation and proper execution of gene expression programs during ESC differentiation. Surprisingly, disruption of the acidic patch domain has a distinct consequence on cellular specification compared to H2AZ depletion. This is consistent with differences in gene expression profiles of H2AZ M-bM-^@M-^Sdepleted and acidic patch (AP) mutant ESCs during early lineage commitment. Interestingly, the distinct consequence of AP mutant expression on gene regulation is coincidence with an altered destabilized chromatin state and high chromatin mobility dependent on active transcription. Collectively, our data shows that the divergent residues within the acidic patch domain are key structural determinants of H2AZ function and links chromatin structure and dynamics with gene regulation and cell fate specification. H2AZ extended acidic patch was mutated, or H2AZ was KD in mouse embryonic stem cells and RNA-Seq analysis was performed on the resulting cultures. Characterization of H2AZ-WT and -AP3-mutant binding specificities were performed by ChIP-Seq.