Project description:The intra sub-species diversity of six strains of Lactococcus lactis subsp. lactis was investigated at the genomic level and in terms of phenotypic and transcriptomic profiles in UF-cheese model. Six strains were isolated from various sources, but all are exhibiting a dairy phenotype. Our results showed that, the six strains exhibited small phenotypic differences since similar behaviour in terms of growth was obtained during cheese ripening while only different acidification capability was detected. Even if all strains displayed high genomic similarities, sharing a high core genome of almost two thousands genes, the expression of this core genome directly in the cheese matrix revealed major strain-specific differences. This strains with the same dairy origin.
Project description:Aside from their amino acid content, dairy proteins are valuable for their ability to carry encrypted bioactive peptides whose activities are latent until released by digestive enzymes or endogenous enzymes within the food. Peptides can possess a wide variety of functionalities, such as antibacterial, antihypertensive, and antioxidative properties, as demonstrated by in vitro and in vivo studies. This phenomenon raises the question as to what impact various traditional cheese-making processes have on the formation of bioactive peptides in the resulting products. In this study, we have profiled the naturally-occurring peptides in two hard and two soft traditional cheeses and have identified their known bioactive sequences. While past studies have typically identified fewer than 100 peptide sequences in a single cheese, we have used modern instrumentation to identify between 2900 and 4700 sequences per cheese, an increase by a factor of about 50. We demonstrated substantial variations in proteolysis and peptide formation between the interior and rind of each cheese, which we ascribed to the differences in microbial composition between these regions. We identified a total of 111 bioactive sequences among the four cheeses, with the greatest number of sequences, 89, originating from Mimolette. The most common bioactivities identified were antimicrobial and inhibition of the angiotensin-converting enzyme. This work revealed that cheese proteolysis and the resulting peptidomes are more complex than originally thought in terms of the number of peptides released, variation in peptidome across sites within a single cheese, and variation in bioactive peptides among cheese-making techniques.
Project description:Interactions between microbes isolated from cheese, isolation information can be found here:
Title: Cheese Rind communities provide tractable systems for in situ and in vitro studies of microbial diversity
Authors: Wolfe, BE; Button, JE; Santarelli, M; Dutton, RJ
Journal: Cell, 2014, Accepted
Project description:This series represents the gene expression study of phages DT1 and 2972 during the whole process of infection. Gene expression was measured at nine time intervals (0, 2, 7, 12, 17, 22, 27, 32, 37 minutes) during phage infection.
Project description:RNA-seq was used in combination with various analytical chemistry approaches to identify the chemical and genetic basis of pigment production of the bacterium Glutamicibacter arilaitensis when growing on cheese. This bacterium commonly found in cheese rinds where it co-occurs with Penicillium species and other molds. Pinkish-red pigments are produced by the bacterium in response to growth with Penicillium. Both chemical analyses and RNA-seq point to coproporphyrin III as the major metabolite leading to pigment formation.
2018-04-01 | GSE112092 | GEO
Project description:in vitro washed rind time series