Project description:This SuperSeries is composed of the following subset Series: GSE20574: Agilent 244A aCGH array for comparison of lung tumor CNA to high-throughput sequencing data GSE20578: Assessment of mutation on expression levels GSE20584: Affymetrix SNP6.0 array for comparison of lung tumor and adjacent normal to high-throughput sequencing data Refer to individual Series
Project description:In this study, we combine MspJI digestion and electrophoretic band selection with next generation high-throughput sequencing technology to detect 5-methylcytosines in Arabidopsis genome. By developing a bioinformatics workflow to attribute the CNNR sites recognized by MspJI to the reference genome, we fulfilled the systematic assessment of this method. According to the assessment, here we provide the method for generating a detailed map of plant methylome that could be feasible, reliable and economical in methylation investigation. Extracting the MspJI digested fragments, constructing sequencing library according to the Illumina protocol and sequencing with Illumina HiSeq2000. Repeatability and reproducibility studies were performed between two samples from the same individual. Specificity and sensitivity of the method was examined by comparing our data with WGBS data downloaded from GEO (GSE15922: GSM399600). **The WGBS seq data ('aerial_tissues_BS_seq_CNNR.gff') was generated from the GSM399600 Sample supplementary files ('aerial_tissues_BS_seq_alignment_batch-*.gff.gz') and was utilized to do comparative study with our MspJI-seq data including sensitivity and specificity analysis.
Project description:Small Cell Lung Cancer (SCLC) is the most aggressive type of lung cancer with early metastatic dissemination and invariable development of resistant disease for which no effective treatment is available to date. Mouse models of SCLC based on inactivation of Rb1 and Trp53 developed earlier showed frequent amplifications of two transcription factor genes: Nfib and Mycl. Overexpression of Nfib but not Mycl in SCLC mouse results in an enhanced and altered metastatic profile, and appears to be associated with genomic instability. NFIB promotes tumor heterogeneity with the concomitant expansive growth of poorly differentiated, highly proliferative, and invasive tumor cell populations. Consistent with the mouse data, NFIB expression in high-grade human neuroendocrine carcinomas correlates with advanced stage III/IV disease warranting its further assessment as a potentially valuable progression marker in a clinical setting. Genomic DNA from mouse small cell lung tumor samples was analyzed by mate pair sequencing and low coverage sequencing. And RNA from Nfib overexpressing mouse small cell lung cancer cell lines was further analyzed for high quality RNA profiles using Illumina Hiseq2500. This series contains only RNA-seq data.
Project description:We investigated miRNA expression in Holstein dairy cow of mammary gland with different producing quality milk using high-throughput sequence and qRT-PCR techniques. miRNA libraries were constructed from mammary gland tissues taken from a high producing quality milk and a low producing quality milk Holstein dairy cow, the small RNA digitalization analysis based on HiSeq high-throughput sequencing takes the SBS-sequencing by synthesis.The libraries included 4732 miRNAs. A total of 124 miRNAs in the high producing quality milk mammary gland showed significant differences in expression compared to low producing quality milk mammary gland (P<0.05). Conclusion: Our study provides a broad view of the bovine mammary gland small RNA expression profile characteristics. Differences in types and expression levels of miRNAs were observed between high producing quality milk and a low producing quality milk Holstein dairy cow
Project description:ChIP-exo/nexus experiments present modifications on the commonly used ChIP-seq protocol for high resolution mapping of transcription factor binding sites. Although many aspects of the ChIP-exo data analysis are similar to those of ChIP-seq, these high throughput experiments pose a number of unique quality control and analysis challenges. We develop a statistical quality control pipeline and accompanying R package, ChIPexoQual, to enable exploration and analysis of ChIP-exo and related experiments. ChIPexoQual evaluates a number of key issues including strand imbalance, library complexity, and signal enrichment of data. Assessment of these features are facilitated through diagnostic plots and summary statistics calculated over regions of the genome with varying levels of coverage. We evaluated our QC pipeline with both large collections of public ChIP-exo/nexus data and multiple, new ChIP-exo datasets from E. coli. ChIPexoQual analysis of these datasets resulted in guidelines for using these QC metrics across a wide range of sequencing depths and provided further insights for modelling ChIP-exo data. Finally, although ChIP-exo experiments have been compared to ChIP-seq experiments with single-end (SE) sequencing, we provide, for the first time, comparisons with paired-end (PE) ChIP-seq experiments. We illustrate that, at fixed sequencing depths, ChIP-exo provides higher sensitivity, specificity, and spatial resolution than PE ChIP-seq and both significantly outperform their SE ChIP-seq counterpart.