Project description:We established simple synthetic microbial communities in a microcosm model system to determine the mechanisms that underlay cross-feeding in microbial methane-consuming communities. Co-occurring strains from Lake Washington sediment were used that are involved in methane consumption, a methanotroph and two non-methanotrophic methylotrophs.
Project description:The contamination of marine ecosystems with microplastics, such as the polymer polyethylene, a commonly used component of single-use packaging, is of global concern. Although it has been suggested that biodegradable polymers, such as polylactic acid, may be used to replace some polyethylene packaging, little is known about their effects on marine organisms. Blue mussels, Mytilus edulis, have become a “model organism” for investigating the effects of microplastics in marine ecosystems. We show here that repeated exposure, over a period of 52 days in an outdoor mesocosm setting, of M. edulis to polyethylene microplastics reduced the number of byssal threads produced and the attachment strength (tenacity) by ~50%. Exposure to either type of microplastic altered the haemolymph proteome and, although a conserved response to microplastic exposure was observed, overall polyethylene resulted in more changes to protein abundances than polylactic acid. Many of the proteins affected are involved in vital biological processes, such as immune- and stress- regulation, metabolism and cellular and structural development. Our study highlights the utility of mass spectrometry-based proteomics to assess the health of key marine organisms and identifies the potential mechanisms by which microplastics, both conventional and biodegradable, could affect their ability to form and maintain reefs.
Project description:The increased urban pressures are often associated with specialization of microbial communities. Microbial communities being a critical player in the geochemical processes, makes it important to identify key environmental parameters that influence the community structure and its function.In this proect we study the influence of land use type and environmental parameters on the structure and function of microbial communities. The present study was conducted in an urban catchment, where the metal and pollutants levels are under allowable limits. The overall goal of this study is to understand the role of engineered physicochemical environment on the structure and function of microbial communities in urban storm-water canals. Water and sediment samples were collected after a rain event from Sungei Ulu Pandan watershed of >25km2, which has two major land use types: Residential and industrial. Samples were analyzed for physicochemical variables and microbial community structure and composition. Functional gene abundance was determined using GeoChip.
Project description:The increased urban pressures are often associated with specialization of microbial communities. Microbial communities being a critical player in the geochemical processes, makes it important to identify key environmental parameters that influence the community structure and its function.In this proect we study the influence of land use type and environmental parameters on the structure and function of microbial communities. The present study was conducted in an urban catchment, where the metal and pollutants levels are under allowable limits. The overall goal of this study is to understand the role of engineered physicochemical environment on the structure and function of microbial communities in urban storm-water canals. Microbial community structure was determined using PhyoChio (G3) Water and sediment samples were collected after a rain event from Sungei Ulu Pandan watershed of >25km2, which has two major land use types: Residential and industrial. Samples were analyzed for physicochemical variables and microbial community structure and composition. Microbial community structure was determined using PhyoChio (G3)
Project description:Microplastics represent a growing environmental concern for the oceans due to their potential capability to adsorb different classes of pollutants, thus representing a still unexplored source of exposure for aquatic organisms. In this study polystyrene (PS) microplastics were characterized for their capability to adsorb pyrene (PYR) as model compound for polycyclic aromatic hydrocarbons, and transfer this chemical to filter feeding mussels Mytilus galloprovincialis. Gene expression analyses of Mytilus galloprovincialis exposed to polystyrene (PS) microplastics and to polystyrene contaminated with pyrene (PS-PYR) have been performed trough a DNA microarray platform.
Project description:The zebrafish embryo has repeatedly proved to be a useful model for the analysis of effects by environmental toxicants. This study was performed to investigate if an approach combining mechanism-specific bioassays with microarray techniques can obtain more in-depth insights into the ecotoxicity of complex pollutant mixtures as present, e.g., in freeze-dried whole sediment samples and their corresponding organic extracts in parallel. To this end, altered gene expression was compared to data from established bioassays as well as to results from chemical analysis. Microarray analysis revealed several classes of significantly regulated genes which could to a considerable extent be related to the hazard potential. Results indicate that potential classes of contaminants can be assigned to sediment extracts by both classical biomarker genes and corresponding expression profile analyses of known substances. However, it is difficult to distinguish between specific responses and more universal detoxification of the organism. Additionally, different gene expression was shown to be less influenced by the sampling site than by the method of exposure, which could be attributed to differential bioavailability of contaminants. Microarray analyses were performed with early life stages of zebrafish exposed to sediment extracts or freeze-dried sediment from three sampling sites (Ehingen, Lauchert, Sigmaringen) along the Upper part of the Danube River, Germany. The expression profiles were compared within the sampling sites, between the exposure scheme and to the expression pattern of model toxicants, such as 4-chloroaniline, Cadmium, DDT, TCDD, and Valproic acid (Gene Expression Omnibus Series GSE9357). Additionally, mechanism-specific bioassays and chemical analysis of the sediments have been combined and compared to the present gene expression data.