Project description:In this report, we have developed a rapid oligonucleotide microarray detection technique to identify the most common ten Legionella spp.. The sensitivity of the detection was at 1.0 ng with genomic DNA or 13 CFU/100 mL with Legionella cultures. The microarray detected seven air conditioner-condensed water samples with 100% accuracy, validating the technique as a promising method for applications in basic microbiology, clinical diagnosis, food safety, and epidemiological surveillance. The phylogenetic study based on the ITS has also revealed interestingly that the non-pathogenic L. fairfieldensis is the closest to L. pneumophila than the nine other pathogenic Legionella spp..
Project description:Salmonella spp. biofilms have been implicated in persistence in the environment and plant surfaces. In addition, Salmonella is able to form biofilms on the surface on cholesterol gallstones. The ability of Salmonella spp. on these surfaces is superior to biofilm formation on surfaces on glass or plastic. Thus, we hypothesized that Salmonella gene expression is specific during biofilm development on cholesterol surfaces.
Project description:Diminished colonic health is associated with various age-related pathologies. In this study, we applied an integrative approach to reveal potential interactions between determinants of colonic health in aging C57BL/6J mice. Analysis of gut microbiota composition revealed an enrichment of various potential pathobionts, including Desulfovibrio spp., and a decline of the health-promoting Akkermansia spp. and Lactobacillus spp. during aging. Intraluminal concentrations of various metabolites varied between ages and we found evidence for an increased gut permeability at higher age. Colonic gene expression analysis suggested that during the early phase of aging (between 6 and 12 months), expression of genes involved in epithelial-to-mesenchymal transition and (re)organization of the extracellular matrix were increased. Differential expression of these genes was strongly correlated with Bifidobacterium spp. During the later phase of aging (between 12 and 28 months), gene expression profiles pointed towards a diminished antimicrobial defense and were correlated with an uncultured Gastranaerophilales spp. This study demonstrates that aging is associated with pronounced changes in gut microbiota composition and colonic gene expression. Furthermore, the strong correlations between specific bacterial genera and host gene expression may imply that orchestrated interactions take place in the vicinity of the colonic wall and potentially mediate colonic health during aging.
Project description:Correspondence between evolution and development has been discussed for more than two centuries. Recent work reveals that phylogeny-ontogeny correlations are indeed present in developmental transcriptomes of eukaryotic clades with complex multicellularity. Nevertheless, it has been largely ignored that the pervasive presence of phylogeny-ontogeny correlations is likely a hallmark of development in eukaryotes. This perspective opens a possibility to look for similar parallelisms in biological settings where developmental logic and multicellular complexity are more obscure. For instance, it has been increasingly recognized that multicellular behavior underlies biofilm formation in bacteria. However, it remains unclear whether bacterial biofilm growth shares some basic principles with development in complex eukaryotes. Here we show that ontogeny of growing Bacillus subtilis biofilms recapitulates phylogeny at the expression level. Using finely resolved transcriptome and proteome profiles, we found that biofilm ontogeny correlates with the evolutionary measures. Early-stage biofilms expressed older and more conserved genes, while later-stage biofilms progressively used evolutionary younger and more diverged genes. Molecular and morphological signatures also revealed that biofilm growth is highly regulated and organized into discrete ontogenetic stages, similar to those of eukaryotic embryos. In conjunction this suggests that biofilm formation in Bacillus is a bona fide developmental process comparable to organismal development in animals, plants and fungi. Given that most cells on Earth reside in the form of biofilms and that biofilms represent the oldest known fossils, we anticipate that the widely-adopted vision of the first life as a single-cell and free-living organism needs rethinking.
Project description:Combining Geobacter spp. dominated biofilms and anaerobic digestion effluents - The effect of effluent composition and electrode potential on biofilm activity and stability