Project description:RNA-seq was performed in order to identify qualitative variation of transcripts in clf-29 lhp1-4 compared to WT, including SNPS, indels, splicing fidelity
Project description:We analyzed here the genome-wide expression changes in roots of clf-29 lhp1-4 mutants in comparison to the WT reference. Plants were grown hydroponically under low nitrate provision (0.3 mM KNO3) and short-days conditions and roots were collected after 5 weeks of growth.
Project description:We analyzed here the genome-wide small RNAs expression changes in roots of WT and clf-29 lhp1-4 mutant. Plants were grown hydroponically under low nitrate provision (0.3 mM KNO3) and short-days conditions, and roots were collected after 5 weeks of growth.
Project description:Transcriptome changes in leaves of PcG protein mutants clf and lhp1. Fully expanded rosette leaf 6 was collected from 10 35-d-old plants grown in short day photoperiods.
Project description:Chromatin remodeling factors of the Imitation Switch (ISWI) family play important roles in epigenetic regulations of gene expression in yeast and animals, whereas their function in plants remains elusive. Here we report characterization of the Arabidopsis ISWI genes CHR11 and CHR17. Double mutant chr11 chr17 displayed a dramatically reduced plant size with early flowering. In addition, epidermis of the double mutant leaves showed cell characteristics seen only in floral organs. These phenotypes resemble, at least partially, those of the Polycomb mutants curly leaf (clf) and like heterochromatin protein1 (lhp1). Microarray analysis revealed that a number of targets of the Polycomb pathway were derepressed in chr11 chr17 leaves. Furthermore, triple mutants combining chr11 chr17 with clf-29 or lhp1-6 both greatly enhanced clf-29 and lhp1-6 phenotypes, respectively. All these results strongly suggest that the ISWI family genes in Arabidopsis may function in gene silencing via the Polycomb pathway Leaves from 15-day-old seedlings of wild-type Col-0 and chr11-1 chr17-1 were used for RNA preparation.In the experiment data,A refers to Col-0, and B refers to chr11-1 chr17-1.
Project description:Col-0 floral stem was grafted on the msh1 mutant (Col-0/msh1); on the dcl2,3,4,msh1 quadruple mutant (Col-0/dcl2,3,4,msh1); on Col-0 (Col-0/Col-0). Seeds were collected from the grafted Col-0 scion after grafts were established. Seed coming from the graft then were grown on the peat mix, leaf tissue was collected at the bolting and used for the total RNA sequencing.
Project description:CURLY LEAF (CLF), the major histone methyltransferase of Polycomb Repressive Complex 2 (PRC2), modifies trimethylation of histone H3 lysine 27 (H3K27me3) and mediates dynamical chromatin repression in Arabidopsis. Here we profiled Arabidopsis transcriptomes obtained from roots, leaves, flowers and siliques of Col-0 and clf-28 plants using RNA-seq. Our analysis uncovered 3835 transcription units were up-regulated in clf-28. Compared with H3K27me3 ChIP-CHIP data, we found at least 42% of them were associated with H3K27me3.
Project description:CURLY LEAF (CLF), the major histone methyltransferase of Polycomb Repressive Complex 2 (PRC2), modifies trimethylation of histone H3 lysine 27 (H3K27me3) and mediates dynamical chromatin repression in Arabidopsis. Here we used strand specific RNA-sequencing to profile Arabidopsis transcriptomes obtained from roots, shoots, flowers and siliques of Col-0 and clf-28 plants. Our analysis identified a large number of CLF-regulatedd transcripts in Arabidopsis.
Project description:Col-0 floral stem was grafted on the msh1 mutant (Col-0/msh1); on the dcl2,3,4,msh1 quadruple mutant (Col-0/dcl2,3,4,msh1); on Col-0 (Col-0/Col-0). Seeds were collected from the grafted Col-0 scion after grafts were established. Seed coming from the graft then were grown on the peat mix, leaf tissue was collected at the bolting and used for the bisulfite sequencing (methylome). Tissue from the msh1 mutant and dcl2,3,4,msh1 quadruple mutants used as rootstocks was similarly collected at the bolting stage and used for the bisulfite sequencing.
Project description:To investigate the deposition of HTR5 in Arabidopsis, we analysed genome-wide HTR5 density in the wild-type Col-0 by ChIP-seq. We then performed HTR5 occupancy analysis using data obtained from ChIP-seq of 3 different plants including HA-HTR5/Col-0 and Col-0. Col-0 acted as negative control.