Project description:We carried out the transcriptome analysis to explore expression profiles differences and identify the key genes involved in pear seed dormancy release, by comparing callery pear (Pyrus calleryana Decne) seeds at three different stages of cold stratification
Project description:In many plant species, flower stigma secretions are important in early stages of sexual reproduction. Previous chemical analysis and proteomic characterization of these exudates provided insights into their biological function. Nevertheless, the presence of nucleic acids in the stigma exudates has not been previously reported. Here we studied the stigma exudates of Pyrus communis, Pyrus pyrifolia and Pyrus syriaca, and showed them to harbor extracellular RNAs of various sizes. RNA sequencing revealed, for the first time, the presence of known Rosaceae mature micro-RNAs (miRs), also abundant in the stigma source tissue. Predicted targets of the exudate miRs in the Arabidopsis thaliana genome include genes involved in various biological processes. Several of these genes are pollen transcribed, suggesting possible involvement of exudate miRs in transcriptional regulation of the pollen. Moreover, extracellular miRs can potentially act across kingdoms and target genes of stigma interacting organisms/microorganisms, thus opening novel applicative avenues in HortSciences.
Project description:Primula vulgaris (primrose) exhibits heterostyly: plants produce self-incompatible pin- or thrum-form flowers, with anthers and stigma at reciprocal heights. Darwin concluded that this arrangement promotes insect-mediated cross-pollination; later studies revealed control by a cluster of genes, or supergene, known as the S (Style length) locus. The P. vulgaris S locus is absent from pin plants and hemizygous in thrum plants (thrum-specific); mutation of S locus genes produces self-fertile homostyle flowers with anthers and stigma at equal heights. Here, we present a 411 Mb P. vulgaris genome assembly of a homozygous inbred long homostyle, representing ~87% of the genome. We annotate over 24,000 P. vulgaris genes, and reveal more genes up-regulated in thrum than pin flowers. We show reduced genomic read coverage across the S locus in other Primula species, including P. veris, where we define the conserved structure and expression of the S locus genes in thrum. Further analysis reveals the S locus has elevated repeat content (64%) compared to the wider genome (37%). Our studies suggest conservation of S locus genetic architecture in Primula, and provide a platform for identification and evolutionary analysis of the S locus and downstream targets that regulate heterostyly in diverse heterostylous species.
Project description:The complete chloroplast genome of Pyrus calleryana (GenBank OM541581.1) was developed by de novo assembly from whole-genome sequencing data. Reference-guided (P. phaeocarpa) read mapping and assembly were followed by annotation and phylogenetic comparisons. The 159,965 bp P. calleryana chloroplast genome represented 36.56% GC content with a classical quadripartite architecture and two inverted repeats regions (IRs; each 26,392 bp) separating the large single-copy region (LSC; 87,942 bp) and the small single-copy region (SSC; 19.239 bp). In total, 125 unique features were annotated in that genome, including 83 protein coding genes, 38 tRNA coding genes, and 4 rRNA coding genes. Phylogenetic analyses based on the whole chloroplast genome sequences placed the P. calleryana among other Rosaceae plants, specifically among the Asian species of Pyrus.