Project description:Cultivated eggplant XN, a waterlogging-tolerant variety, were treated with waterlogging stress, and the root of XN eggplant were harvested at the time point of 0, 6, 12, and 24 h post treatment ,relatively. iTRAQ-based quantitative proteomics was performed to analyze protein dynamics in eggplant root.
2023-07-20 | PXD041747 | Pride
Project description:Single Primer Enrichment Technology (SPET) for high-throughput genotyping in tomato
Project description:Analysis of soleus (SOL) muscle isolated from wildtype (WT) and Mettl21cLacZ/LacZ mice (KO). Results provide unbiased gene expression profile of SOL muscle after Mettl21c deletion.
Project description:Transcriptome analysis of Eggplant cv. PPL during fruit development at 0, 5, 10, 20 and 50 dpa. Eggplant is third most important solanaceae crop species after potato and tomato. It is a versatile crop adapted to different agro-climatic regions and can be grown throughout the year. Unripe eggplant fruit is consumed as cooked vegetable in various ways. It is low in calories and fats, contains mostly water, some protein, fibre and carbohydrates. To decipher molecular mechanisms involved in fruit development eggplant fruit were collected at 0, 5, 10, 20 and 50 dpa and gene expression profiles were analyzed using Affymetrix tomato GeneChip Genome array.
Project description:BACKGROUND: Western flower thrips are considered the major insect pest of horticultural crops worldwide, causing economic and yield loss to Solanaceae crops. The eggplant (Solanum melongena L.) resistance against thrips remains largely unexplored. This work aims to identify thrips-resistant eggplants and dissect the molecular mechanisms underlying this resistance using the integrated metabolomic and transcriptomic analyses of thrips-resistant and -susceptible cultivars. RESULTS: We developed a micro-cage thrips bioassay to identify thrips-resistant eggplant cultivars, and highly resistant cultivars were identified from wild eggplant relatives. Metabolomic profiles of thrips-resistant and -susceptible eggplant were compared using the gas chromatography-mass spectrometry (GC-MS)-based approach, resulting in the identification of a higher amount of quinic acid in thrips-resistant eggplant compared to the thrips-susceptible plant. RNA-sequencing analysis identified differentially expressed genes (DEGs) by comparing genome-wide gene expression changes between thrips-resistant and -susceptible eggplants. Consistent with metabolomic analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of DEGs revealed that the starch and sucrose metabolic pathway in which quinic acid is a metabolic by-product was highly enriched. External application of quinic acid enhances the resistance of susceptible eggplant to thrips. CONCLUSION: Our results showed that quinic acid plays a key role in the resistance to thrips. These findings highlight a potential application of quinic acid as a biocontrol agent to manage thrips and expand our knowledge to breed thrips-resistant eggplant.