Project description:We present an improved version of DART-seq which utilizes a variant of the YTH domain engineered to achieve enhanced m6A recognition in APO1-YTH (D422N). In addition, we develop in vitro DART-seq and show that it performs similarly to cellular DART-seq and can map m6A in any sample of interest using nanogram amounts of total RNA.
Project description:We performed a genome-wide deep sequencing analysis of the microRNAs abundant in mesenchymal stem cells (MSCs) derived from murine brown adipose tissue and in in vitro differentiated mature brown adipocytes. Several microRNAs were identified as differentially regulated when comparing datasets from MSCs vs. mature fat cells. These microRNAs may have an implication in the regulation of adipogenesis as well as thermogenesis in brown adipose tissue (BAT).
Project description:PR (PRD1-BF1-RIZ1 homologous) domain-containing 16 (PRDM16) drives a brown fat differentiation program, but the mechanisms by which PRDM16 activates brown fat-selective genes have been unclear. Through chromatin immunoprecipitation (ChIP) followed by deep sequencing (ChIP-seq) analyses in brown adipose tissue (BAT), we reveal that PRDM16 binding is highly enriched at a broad set of brown fat-selective genes. Importantly, we found that PRDM16 physically binds to MED1, a component of the Mediator complex, and recruits it to superenhancers at brown fat-selective genes. PRDM16 deficiency in BAT reduces MED1 binding at PRDM16 target sites and causes a fundamental change in chromatin architecture at key brown fat-selective genes. Together, these data indicate that PRDM16 controls chromatin architecture and superenhancer activity in BAT.