Project description:Many well-studied animal species use conspicuous, repetitive signals that attract both mates and predators. Orthopterans (crickets, katydids, and grasshoppers) are renowned for their acoustic signals. In Neotropical forests, however, many katydid species produce extremely short signals, totaling only a few seconds of sound per night, likely in response to predation by acoustically orienting predators. The rare signals of these katydid species raises the question of how they find conspecific mates in a structurally complex rainforest. While acoustic mechanisms, such as duetting, likely facilitate mate finding, we test the hypothesis that mate finding is further facilitated by colocalization on particular host plant species. DNA barcoding allows us to identify recently consumed plants from katydid stomach contents. We use DNA barcoding to test the prediction that katydids of the same species will have closely related plant species in their stomach. We do not find evidence for dietary specialization. Instead, katydids consumed a wide mix of plants within and across the flowering plants (27 species in 22 genera, 16 families, and 12 orders) with particular representation in the orders Fabales and Laurales. Some evidence indicates that katydids may gather on plants during a narrow window of rapid leaf out, but additional investigations are required to determine whether katydid mate finding is facilitated by gathering at transient food resources.
Project description:Gastrointestinal microbiota has significant impact on the nutrition and health of monogastric herbivores animals including donkey. However, so far the microbiota in different gastrointestinal compartments of healthy donkey has not been described. Therefore, we investigated the abundance and function of microbiota at different sites of the gastrointestinal tract (GIT) (foregut: stomach, duodenum, jejunum and ileum; hindgut: cecum, ventral colon, dorsal colon, and rectum) of healthy adult donkeys mainly based on 16S rRNA gene sequencing and phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt) analysis. Collectively, our results showed that donkey has a rich, diverse and multi-functional microbiota along the GIT. In general, the richness and diversity of the microbiota are much higher in the hindgut relative to that in the foregut; at phylum level, the Firmicutes is dominant in the foregut while both Firmicutes and Bacteroides are abundant in the hindgut; at the genus level, Lactobacillus was dominant in the foregut while Streptococcus was more dominant in the hindgut. Our further PICRUSt analysis showed that varying microbiota along the GIT is functionally compatible with the corresponding physiological function of different GIT sites. For example, the microbes in the foregut are more active at carbohydrate metabolism, and in the hindgut are more active at amino acid metabolism. This work at the first time characterized the donkey digestive system from the aspects of microbial composition and function, provided an important basic data about donkey healthy gastrointestinal microbiota, which may be utilized to evaluate donkey health and also offer clues to further investigate donkey digestive system, nutrition, even to develop the microbial supplements.
Project description:Species identification of fragmentary bones remains a challenging task in archeology and forensics. A species identification method for such fragmentary bones that has recently attracted interest is the use of bone collagen proteins. We developed a method similar to DNA barcoding that reads collagen protein sequences in bone and automatically determines the species by performing sequence database searches. We tested our method using bone samples from 30 vertebrate species ranging from mammals to fish.