Project description:Using whole genome microarray (Affymetrix ATH1) we studied the transcriptional response of Arabidopsis thaliana to glyphosate (Roundup Original) herbicde that inhibits 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) enzyme and thus disrupts aromaticamino acid biosynthesis. Few genes related to defense and secondary metabolism were altered. Experiment Overall Design: Surfactant (preference 0.25%) treated plants were used as carrier control group and EC50 concentration of glyphosate was used as the herbicide treatment group. Each of the control and treatment group consisted of 3 biological replicates and each biological replicates comprised leaves from 10 individual plants. RNA was extracted at 24h post treatment to study the transcriptional alterations caused by the herbicide treatment.
Project description:Small RNAs have emerged as a promising new type of biomarker to monitor health status and track the development of diseases. Here we report changes in the levels of small RNAs in the liver of rats exposed to a mixture (MIX) of six pesticides frequently detected in foodstuffs (azoxystrobin, boscalid, chlorpyrifos, glyphosate, imidacloprid and thiabendazole), and glyphosate (G50) (50 mg/kg bw/day), or its representative EU commercial herbicide formulation Roundup MON 52276 (R50) at the same glyphosate equivalent doses in comparison to a control group (CON).
Project description:Background: Herbicides are environmental contaminants that have gained much attention due to the potential hazards they pose to human health. Glyphosate, the active ingredient in many commercial herbicides, is the most heavily applied herbicide worldwide. The recent rise in glyphosate application to corn and soy crops correlates positively with increased death rates due to Alzheimer's disease and other neurodegenerative disorders. Glyphosate has been shown to cross the blood-brain barrier in in vitro models, but has yet to be verified in vivo. Additionally, reports have shown that glyphosate exposure increases pro-inflammatory cytokines in blood plasma, particularly TNFα. Methods: Here, we examined whether glyphosate infiltrates the brain and elevates TNFα levels in 4-month-old C57BL/6J mice. Mice received either 125, 250, or 500 mg/kg/day of glyphosate, or a vehicle via oral gavage for 14 days. Urine, plasma, and brain samples were collected on the final day of dosing for analysis via UPLC-MS and ELISAs. Primary cortical neurons were derived from amyloidogenic APP/PS1 pups to evaluate in vitro changes in Aβ40-42 burden and cytotoxicity. RNA sequencing was performed on C57BL/6J brain samples to determine changes in the transcriptome. Results: Our analysis revealed that glyphosate infiltrated the brain in a dose-dependent manner and upregulated TNFα in both plasma and brain tissue post-exposure. Notably, glyphosate measures correlated positively with TNFα levels. Glyphosate exposure in APP/PS1 primary cortical neurons increases levels of soluble Aβ40-42 and cytotoxicity. RNAseq revealed over 200 differentially expressed genes in a dose-dependent manner and cell-type-specific deconvolution analysis showed enrichment of key biological processes in oligodendrocytes including myelination, axon ensheathment, glial cell development, and oligodendrocyte development. Conclusions: Collectively, these results show for the first time that glyphosate infiltrates the brain, elevates both the expression of TNFα and soluble Aβ, and disrupts the transcriptome in a dose-dependent manner, suggesting that exposure to this herbicide may have detrimental outcomes regarding the health of the general population.
Project description:In this study, the circRNAs expression pattern in hippocampus of postnatal day (PND) 28 mice offsprings which were exposured by glyphosate-based herbicide (GBH) during pregnancy and lactation was investigated. CircRNA microarray had detected 330 upregulated and 333 downregulated miRNAs in the PND28 mice offsprings' hippocampus
Project description:In this study, the lncRNAs expression pattern in hippocampus of postnatal day (PND) 28 mice offsprings which were exposured by glyphosate-based herbicide (GBH) during pregnancy and lactation was investigated. LncRNA microarray had detected 840 upregulated and 919 downregulated lncRNAs in the PND28 mice offsprings' hippocampus
Project description:This project aimed to investigate the effects of glyphosate-based herbicide Roundup LB Plus on bacteria. For this, ten environmental strains of Salmonella enterica were exposed to the increasing concentrations of Roundup over several passages to obtain Roundup-resistant mutants. Four stable re-sequenced resistant mutants and their respective ancestors were characterized by global proteomics in the presence and absence of sub-inhibitory (1/4xMIC) concentrations of the herbicide. By comparing the proteomes of the Roundup-challenged ancestors with constitutive non-challenged ancestors, it became possible to deepen the understanding of how Roundup stress affects naïve bacteria. Similarly, comparing Mutants versus Ancestors in the absence of Roundup allowed to understand how Roundup resistance constitutively affects bacterial physiology, while the comparison of Roundup-challenged mutants versus constitutive mutants helped improve the understanding of the inducible responses in the resistant background.
Project description:One of the most widely used agricultural compounds worldwide is the herbicide glyphosate (N-(phosphonomethyl)glycine), commonly known as Roundup. The current study using a transient exposure of gestating F0 generation female rats found negligible impacts of glyphosate on the directly exposed F0 generation or F1 generation offspring, but dramatic increases in pathologies in the F2 generation grand-offspring and F3 transgenerational great-grand-offspring. The transgenerational pathologies observed include prostate disease, obesity, kidney disease, ovarian disease, and parturition (birth) abnormalities. Epigenetic analysis of the F1, F2 and F3 generation sperm identified altered DNA methylation.
Project description:Glyphosate is one of the most widely used herbicides globally. It acts by inhibiting an enzyme in an aromatic amino synthesis pathway specific to plants and microbes, leading to view that glyphosate poses no risk to other organisms. However, there is growing concern that glyphosate is associated with detrimental health effects in humans, and an ever-increasing body of evidence suggests that glyphosate affects other animals including pollinating insects such as bees. Although pesticides have long been considered a contributing factor in the decline of wild bee populations most research on bees has focussed on demonstrating and understanding the effects (particularly sublethal ones) of insecticides. To assess whether glyphosate poses a potential risk to bees we characterised the changes in survival, behaviour, digestive tract proteome and microbiome in the bumblebee Bombus terrestris after chronic exposure to field relevant doses of glyphosate alone and as part of the commercially available product RoundUp Optima+®. Regardless of source, changes in response to herbicide exposure in important cellular and physiological processes in the digestive tract of B. terrestris were observed, with the abundances of proteins associated with oxidative stress regulation, metabolism, cellular adhesion, the extracellular matrix, and various signalling pathways being altered. Interestingly, endocytosis, oxidative phosphorylation, the TCA cycle, and carbohydrate, lipid, and amino acid metabolism were differentially altered depending on whether the exposure source was glyphosate AI or RoundUp Optima+®. In addition, RoundUp Optima+®, but not the active ingredient glyphosate, impacted fungal diversity in the digestive tract microbiota. Our research provides new insights into the potential mode of action and consequences of glyphosate exposure at the molecular and cellular levels in bumblebees and highlights issues with current regulatory measures involving commercial formulations of pesticides where the impact of the co-formulants on non-target organisms are generally overlooked.
Project description:This study aimed to investigate the hepatic transcriptional response of brown trout to glyphosate, and its formulated product, Roundup. We exposed juvenile female brown trout to three concentrations of glyphosate (0.01, 0.5 and 10 mg/L) and Roundup (0.01, 0.5 and 10 mg/L glyphosate acid equivalent) for 14 days and sequenced the hepatic transcriptome of 6 individual females per treatment group in order to determine the global mechanisms of toxicity of this widely used herbicide. We assembled the brown trout transcriptome using an optimised de novo approach, and subsequent differential expression analysis identified a total of 1020 differentially-regulated transcripts across all treatments. Differentially-expressed transcripts included those encoding components of the antioxidant system, a number of stress-response proteins and pro-apoptotic signalling molecules. Functional analysis also revealed over-representation of pathways involved in regulation of cell-proliferation and turnover, and up-regulation of energy metabolism and other metabolic processes. Together, these transcriptional changes are consistent with generation of oxidative stress and the widespread induction of compensatory cellular stress response pathways. The mechanisms of toxicity identified were similar across both glyphosate and Roundup treatments, including for environmentally relevant concentrations. The significant alterations in transcript expression observed at the lowest concentrations tested raises concerns for the toxicity of this herbicide to fish populations inhabiting contaminated rivers.
Project description:This study aimed to investigate the hepatic transcriptional response of brown trout to glyphosate, and its formulated product, Roundup. We exposed juvenile female brown trout to three concentrations of glyphosate (0.01, 0.5 and 10 mg/L) and Roundup (0.01, 0.5 and 10 mg/L glyphosate acid equivalent) for 14 days and sequenced the hepatic transcriptome of 6 individual females per treatment group in order to determine the global mechanisms of toxicity of this widely used herbicide. We assembled the brown trout transcriptome using an optimised de novo approach, and subsequent differential expression analysis identified a total of 1020 differentially-regulated transcripts across all treatments. Differentially-expressed transcripts included those encoding components of the antioxidant system, a number of stress-response proteins and pro-apoptotic signalling molecules. Functional analysis also revealed over-representation of pathways involved in regulation of cell-proliferation and turnover, and up-regulation of energy metabolism and other metabolic processes. Together, these transcriptional changes are consistent with generation of oxidative stress and the widespread induction of compensatory cellular stress response pathways. The mechanisms of toxicity identified were similar across both glyphosate and Roundup treatments, including for environmentally relevant concentrations. The significant alterations in transcript expression observed at the lowest concentrations tested raises concerns for the toxicity of this herbicide to fish populations inhabiting contaminated rivers. Fish were exposed to 3 concentrations of glyphosate (0.01, 0.1 and 10 mg/L), 3 concentrations of Roundup (0.01, 0.5 and 10 mg/L glyphosate acid equivalent) and water controls for 14 days. Liver mRNA from 6 replicate individuals per treatment was sequenced in an Illumina HiSeq 2500 platform. Two control groups (n=6 fish per group) were included. Using a de novo approach, we assembled the hepatic transcriptome for brown trout. Sequence reads were re-mapped to the assembled transcriptome using Bowtie2 and transcript expression profiling was conducted using EdgeR. ERCC spike controls were added to all individual samples, allowing for the assessment of the reproducibility and dynamic range for transcript expression quantification in our experiments. For the group exposed to 0.1 mg/L glyphosate, only 3 females were available to sequence and the variability between individuals was very high with 1 female identified as an outlier. For this reason, data from this treatment group was deemed unreliable and excluded from the analysis.