Project description:Tomato is one of the most important crops for human consumption. Unfortunately, its production is affected by diseases caused by pathogens such as the actynomicete Clavibacter michiganensis subsp. michiganens (Cmm). This pathogen is the causal agent of the bacterial canker of tomato, considered one of the most devastating tomato diseases. To date, there are not resistant varieties of commercial tomato against Cmm. However, there are wild tomato species resistant to Cmm. Using massive sequencing, we obtained the transcriptomes of the wild tomato species Solanum arcanum LA2157 and the commercial tomato Solanum lycopersicum cv. Ailsa Craig at 8 and 24 hours after Cmm challenge. We identified potential tomato tolerance-related genes by three approaches: mapping the reads to S. lycopersicum reference genome SL3.0, performing a semi de novo transcriptome assembly and a de novo transcriptome assembly. Some functional groups such as oxylipin biosynthetic process response to wounding, response to cytokinin among others, were enriched in both tomato species, suggesting a similar response, however, genes that encode proteins such as the Polyphenol oxidase E, Ankyrin and Leucine Rich Repeat receptors were overexpressed mainly in the wild tomato species, suggesting a possible role in the defense response. Here, we uncovered new candidate genes potentially related to bacterial canker tomato defense.
Project description:Members of the tomato clade exhibit wide diversity in fruit coloration, growth habit, leaf morphology and mating preferences. However, the mechanisms governing inter-species diversity in fruit coloration are largely unknown. Therefore, a proteomic approach combined with carotenoid profiling and carotenogenic gene expression was used to decipher the diversity in carotenogenesis in green-fruited Solanum habrochaites, orange-fruited S. galapagense, and red-fruited S. pimpinellifolium with S. lycopersicum, cv. Ailsa Craig (tomato).
Project description:RNA-seq of seedlings of four tomato species Solanum habrochaites, Solanum lycopersicum, Solanum pimpinelliolium, and Solanum pennellii. An additional panel of samples include many tissues from Solanum lycopersicum and Solanum pennellii in two light conditions