Project description:To unravel distinct pattern of metagenomic surveillance and respiratory microbiota between Mycoplasma pneumoniae (M. pneumoniae) P1-1 and P1-2 and explore the impact of COVID-19 pandemic on epidemiological features
Project description:The sexually transmitted parasite Trichomonas vaginalis is often found in symbiosis with the obligate intracellular pathogen Mycoplasma hominis. M. hominis is itself an opportunistic pathogen of the female reproductive tract associated with bacterial vaginosis. The goal of this experiment was to identify the effects of each pathogen individually and in symbiosis on host cell gene expression.
Project description:The goal of this experiment is to determine the overall relative strength of promoter sequences in Mycoplasma feriruminatoris. For this, 2 replicates were grown in parallel in Hayflick media and the RNA wa extracted at exponential growth phase (20 hours). With this data, new promoter sequences could be designed and further validated by the use of RT-qPCR and reporter assays.
Project description:Mycoplasma hyopneumoniae is the causative agent of porcine enzootic pneumonia and a major factor in the porcine respiratory disease complex. A clear understanding of the mechanisms of pathogenesis does not exist although it is clear that M. hyopneumoniae adheres to porcine ciliated epithelium by action of a protein called P97. Previous studies have shown variation in the gene encoding the P97cilium adhesin within different strains of M. hyopneumoniae, but the extent of genetic variation among field strains across the genome is not known. Since M. hyopneumoniae is a worldwide problem, it is reasonable to expect that a wide range of genetic variability may exist given all of the different breed and housing conditions. This variation may impact the overall virulence of a single strain. Using microarray technology, this study examined potential variation of fourteen field strains in comparison to strain 232 on which the array was based. Genomic DNA was obtained, amplified with TempliPhi™, and labeled indirectly with Alexa dyes. Post genomic hybridization, the arrays were scanned and data analyzed using a linear statistical model. Results indicate that genetic variation could be detected in all fourteen field strains but across different loci, suggesting that variation occurs throughout the genome. Fifty-nine percent of the variable loci were hypothetical genes. Twenty-two percent of the lipoprotein genes showed variation in at least one field strain. A permutation test identified a location in M. hyopneumoniae genome where spatial clustering of variability between the field strains and strain 232 exists. Keywords: CGH, Mycoplasma Hyopneumoniae
Project description:The immune response associated with mastitis caused by Mycoplasma bovis is a very complicated biological process in several type of cells, including immune cells, mammary epithelial cells and, endothelial cells. Thus, revealing of the microRNAs in the Mycoplasma bovis infected mammary gland tissues is particularly important for the immune response mechanism to Mycoplasma bovis. Firstly, mammary gland tissue samples were collected from Holstein cows and screened for Mycoplasma bovis. Then, total RNA was isolated from mycoplasma bovis infected tissues and RNA sequencing was performed. After bioinformatics analysis, GO and KEGG analysis of target genes of identified microRNAs were conducted. Our results revaled that 24 of the known microRNAs were expressed differently and 13 of the novel microRNAs were expressed differently in Mycoplasma bovis positive tissues. The target genes of these microRNAs were found to be associated with especially inflammation pathways. In conclusion, this study demonstrated that identified miRNAs may be involved in the signaling pathways during mastitis case caused by Mycoplasma bovis.
Project description:Mycoplasma gallisepticum transcriptome comparison between in vitro grown cultures of strains Rlow and F utilizing oligo DNA microarrays.
Project description:Mycoplasma hyopneumoniae, the causative agent of swine enzootic pneumonia, colonizes the cilia of swine lungs, causing ciliostasis and cell death. Mycoplasma hyopneumoniae is a component of the porcine respiratory disease complex (PRDC) and is especially problematic for the finishing swine industry, causing the loss of hundreds of millions of dollars in farm revenues worldwide. For successful infection, M. hyopneumoniae must effectively resist oxidative stresses due to the release of oxidative compounds from neutrophils and macrophages during the host’s immune response. However, the mechanism M. hyopneumoniae uses to avert the host response is still unclear. To gain a better understanding of the transcriptional responses of M. hyopneumoniae under oxidative stress, cultures were grown to early exponential phase and exposed to 0.5% percent hydrogen peroxide for 15 minutes. RNA samples from these cultures were collected and compared to RNA samples from control cultures using two-color PCR-based M. hyopneumoniae microarrays. This study revealed significant down-regulation of important glycolytic pathway genes and gene transcription proteins, as well as a protein known to activate oxidative stressor cascades in neutrophils. This study has also contained significantly differentially expressed genes common to other environmental stress responses, and merits further study of universal stress response genes of M. hyopneumoniae. Keywords: Mycoplasma hyopneumoniae, RNA microarray
Project description:The object is to learn if there are variations in the lipid profiles of the three genomic variants (relative to one another) and if there are difference the lipid profiles due to growth in medium having different supplements. Mycoplasmas are eubacteria, but have only a single plasma membrane and no cell wall. They acquire FAs and cholesterol and other (perhaps many unknown) lipids from the medium which is complex and contains mammalian serum. Various mycoplasma species have been shown to contain a wide spectrum of bacterial lipids, but the composition is unknown for this mycoplasma species. We are particularly interested in ratios of membrane lipids among our strains, in part to gain clues about differences in metabolic pathways pertinent to membrane biogenesis; and to predict any underlying features that could relate to the extremely different modes of cell propagation observed among these genomic constructs.
Project description:Analysis of H292 cells infected with Mycoplasma hyorhinis. Mycoplasma infection reduces the cytotoxic effect of Nutlin3 on H292 cells. The results provide insight into molecular mechanisms underlying the response of H292 cells to Nutlin3.