Project description:Orthopox viruses, including monkeypox, multiply intracellularly and induce numerous changes in host genes expression. The virus target mainly humoral host response, and simultaneously, exploits other genes and functions to reproduce effectively. The goal of this experiment is to identify those host genes and functions that are essential for monkeypox virus replication. Mock infected control cells were treated and incubated identically to time point arms, except for virus exposure. Two time points of cells infected with monkeypox virus were harvested at 3, 7 hours post infection, and gene expression was assessed using microarray in all arms. The experiment was done in triplicate.
Project description:Orthopoxviruses are large DNA viruses which can cause disease in numerous host species. Even though the eradication of variola virus - the causative agent of human smallpox M-bM-^@M-^S succeeded, with the end of vaccinations several other orthopoxviruses emerged as potential threat to human health. For instance, animal-borne monkeypox virus, cowpox virus and closely related vaccinia virus are all capable of establishing zoonotic infections in humans. The disease caused by each virus differs in terms of expression and severity, but we still know little about the reasons for these different phenotypes. They may be explained by the unique repertoire of host cell modulating factors encoded by each virus. In this study, we aimed at characterizing the specific modulation of the host cells gene expression profile by orthopoxvirus infection. In our study we analyzed changes in host cell gene expression of HeLa cells after infection with cowpox virus, monkeypox virus or vaccinia virus and compared these to each other and to the gene expression profile of non-infected cells using Agilent Whole Genome Microarray technology. We could identify major differences in viral modulation of host cell immune response genes, especially an induction of genes involved in leukocyte migration and Toll-like receptor signalling in cowpox and monkeypox virus infected cells. This was not observed following vaccinia virus infection. If these differences contribute to the different clinical manifestation of cowpox, monkeypox and vaccinia virus infections in certain host species remains to be elucidated. We analyzed the gene expression profile of HeLa cells wich were either mock-infected or infected with Vaccinia virus strain IHD-W, Cowpox virus strain Brighton Red or Monkeypox virus strain MSF#6 at a multiplicity of infection of 5. Experiments were performed in duplicate. At 6 h post infection total RNA was isolated from infected cells and used for microarray analysis.
Project description:Orthopox viruses, including monkeypox, multiply intracellularly and induce numerous changes in host genes expression. The virus target mainly humoral host response, and simultaneously, exploits other genes and functions to reproduce effectively. The goal of this experiment is to identify those host genes and functions that are essential for monkeypox virus replication.
Project description:Monkeypox virus (MPXV) is a double-stranded DNA virus that poses a significant threat to global public health security.In this project, we present data on the proteomics of A23R-transfected HEK293T cells, to identify the proteins interacting with MPXV-A23R protein by LC-MS,aiming to enhance our comprehension of A23R.
Project description:Monkeypox virus (MPXV) is a double-stranded DNA virus that poses a significant threat to global public health security.In this project, we present data on the proteomics of F3L-transfected HEK293T cells, to identify the proteins interacting with MPXV-F3L protein by LC-MS,aiming to enhance our comprehension of F3L.
Project description:Orthopoxviruses are large DNA viruses which can cause disease in numerous host species. Even though the eradication of variola virus - the causative agent of human smallpox – succeeded, with the end of vaccinations several other orthopoxviruses emerged as potential threat to human health. For instance, animal-borne monkeypox virus, cowpox virus and closely related vaccinia virus are all capable of establishing zoonotic infections in humans. The disease caused by each virus differs in terms of expression and severity, but we still know little about the reasons for these different phenotypes. They may be explained by the unique repertoire of host cell modulating factors encoded by each virus. In this study, we aimed at characterizing the specific modulation of the host cells gene expression profile by orthopoxvirus infection. In our study we analyzed changes in host cell gene expression of HeLa cells after infection with cowpox virus, monkeypox virus or vaccinia virus and compared these to each other and to the gene expression profile of non-infected cells using Agilent Whole Genome Microarray technology. We could identify major differences in viral modulation of host cell immune response genes, especially an induction of genes involved in leukocyte migration and Toll-like receptor signalling in cowpox and monkeypox virus infected cells. This was not observed following vaccinia virus infection. If these differences contribute to the different clinical manifestation of cowpox, monkeypox and vaccinia virus infections in certain host species remains to be elucidated.
Project description:Primary human astrocytes were infected with either monkeypox virus (MPXV clade IIb lineage), vaccinia virus (VACV: Acambis 2000), or controls (MC=monkeypox control, AC = Vaccinia control) at an MOI of 10 for 6 h. Samples (n=4) were analyzed by LC-MS/MS with label-free quantification where the data was acquired by data-dependent acquisition (DDA).
Project description:Monkeypox virus (MPV) can infect human cells and induces injuries in human. However, whether and how MPV affect the function of human cells remain to be elucidated. Here, we overexpressed H3L and A29L in hESCs, separately. We appliced RNA-seq on cardiac lineage cells (day 3 of cardiac differentiation) derived from human embryonic stem cells (hESCs) overexpressed with Monkeypox virus-proteins (Control, H3L and A29L) and want to know gene expression patterns of control and overexpression cell lines. Subsequent data analyses will help us to know whether and how H3L and A29L affect human cardiac development.
Project description:We developed two multivalent mRNA vaccines that induced strong immune responses and provided protection against monkeypox virus in mice. Additionally, we used single-cell RNA sequencing and V(D)J sequencing to explore the postvaccination immune landscape at the single-cell level and revealed B-cell receptor and T-cell receptor diversity, gene rearrangement, and predicted CDR3 motifs, systematically exploring the post-vaccination immune landscape at the single-cell level. These findings are poised to guide future vaccine design and present an innovative clinical strategy against monkeypox and orthopoxvirus outbreaks.