Project description:This SuperSeries is composed of the following subset Series: GSE25878: Artemisinin resistance in Plasmodium falciparum is associated with an altered temporal pattern of transcription (expression) GSE25879: Artemisinin resistance in Plasmodium falciparum is associated with an altered temporal pattern of transcription (CGH) Refer to individual Series
Project description:Investigation of whole genome gene expression level changes in Plasmodium falciparum 3D7 delta-PfPuf2 mutant, compared to the wild-type strain 3D7. The mutation engineered into this strain render tanslational control. The mutants analyzed in this study are further described in Miao J, Li J, Fan Q, Li X, Li X, Cui L.2010. The Puf-family RNA-binding protein PfPuf2 regulates sexual development and sex differentiation in the malaria parasite Plasmodium falciparum. J Cell Sci. 123(7):1039-49 (PMID 20197405). A 12 chip study using total RNA recovered from six separate wild-type cultures of Plasmodium falciparum 3D7 at gametocyte stage III (three cultures) and stage V (three cultures) and six separate cultures of dalta PfPuf2 mutant at gametocyte stage III (three cultures) and stage V (three cultures). Each chip measures the expression level of 5,367 genes from Plasmodium falciparum 3D7 with 45-60 mer probes with two replicates on final array of 71618 probes.
Project description:Artemisinin resistance in Plasmodium falciparum malaria has emerged in western Cambodia. This is a major threat to global plans to control and eliminate malaria as the artemisinins are a key component of antimalarial treatment throughout the world. Using DNA microarrays we identify key features of a transcriptional profile that are associated with the delayed parasite clearance phenotype. These include reduced expression of several basic metabolic and cellular pathways in the early stages, and increased expression of essentially all functionalities associated with protein metabolism in the later stages of P. falciparum intraerythrocytic development. This is consistent with the reduced ring stage susceptibility that characterizes artemisinin resistant P. falciparum. This modulation of the P. falciparum intraerythrocytic transcriptome may result from differential expression of several regulatory proteins such as transcription factors of chromatin remodeling associated factors. In addition, the artemisinin resistant phenotype is strongly associated with a specific pattern of copy number variations, some of which are linked with differential expression of several regulatory proteins such as histone 4 and zinc permease. This study reports the first global transcriptional survey of artemisinin resistant parasites and provides a set of candidate genes for further investigation. 6 P. falciparum parasites (field isolates) which are either Artemsinin resistant or sensitive from 3 study sites (Pailin in Cambodia, Xepon in Laos, Mae Sot in Thailand) were sampled and harvested for genomic DNA. gDNA from a total of 6 samples were extracted by phenol chloroform. Synthesis of labelled target DNA was carried out as previously described: Mackinnon, M.J. et al. Comparative transcriptional and genomic analysis of Plasmodium falciparum field isolates. PLoS Pathog 5, e1000644 (2009), and used in comparative genomic microarray hybridizations (CGH).
Project description:Investigation of whole genome gene expression level changes in Plasmodium falciparum 3D7 delta-PfPuf2 mutant, compared to the wild-type strain 3D7. The mutation engineered into this strain render tanslational control. The mutants analyzed in this study are further described in Miao J, Li J, Fan Q, Li X, Li X, Cui L.2010. The Puf-family RNA-binding protein PfPuf2 regulates sexual development and sex differentiation in the malaria parasite Plasmodium falciparum. J Cell Sci. 123(7):1039-49 (PMID 20197405).
Project description:Identification of genome wide gene copy number polymorpisms in Plasmodium falciparum by comparative genomic hybridizations on an oligonucleotide microarray. The 3D7 strain was used as a common reference in all strain/strain comparisons. A panel of the strains were hybridized to self in order to estimate the level of noise.
Project description:Artemisinin resistance in Plasmodium falciparum malaria has emerged in western Cambodia. This is a major threat to global plans to control and eliminate malaria as the artemisinins are a key component of antimalarial treatment throughout the world. Using DNA microarrays we identify key features of a transcriptional profile that are associated with the delayed parasite clearance phenotype. These include reduced expression of several basic metabolic and cellular pathways in the early stages, and increased expression of essentially all functionalities associated with protein metabolism in the later stages of P. falciparum intraerythrocytic development. This is consistent with the reduced ring stage susceptibility that characterizes artemisinin resistant P. falciparum. This modulation of the P. falciparum intraerythrocytic transcriptome may result from differential expression of several regulatory proteins such as transcription factors of chromatin remodeling associated factors. In addition, the artemisinin resistant phenotype is strongly associated with a specific pattern of copy number variations, some of which are linked with differential expression of several regulatory proteins such as histone 4 and zinc permease. This study reports the first global transcriptional survey of artemisinin resistant parasites and provides a set of candidate genes for further investigation. 11 P. falciparum parasites (field isolates) which are either Artemsinin resistant or sensitive from 3 study sites (Pailin in Cambodia, Xepon in Laos, Mae Sot in Thailand) were sampled, grown ex-vivo over 48 hours and harvested at regular intervals. RNA from a total of 91 samples were extracted. Synthesis of target DNA was carried out as previously described: Mackinnon, M.J. et al. Comparative transcriptional and genomic analysis of Plasmodium falciparum field isolates. PLoS Pathog 5, e1000644 (2009), and used in microarray hybridizations.