Project description:Glyphosate and 2,4-D are among the most widely used herbicides globally, leading to environmental presence, food contamination, and human contact. Investigations based on current toxicological limits or populational-based herbicide exposures are warranted, and in vitro bioassays provide useful tools for toxicological screening. Thus, this study evaluated the transcriptomic implications of non-cytotoxic exposures to glyphosate, its metabolite aminomethylphosphonic acid (AMPA), or 2,4-D - or to their mixes - on hepatic cells. The half maximal effective concentration (IC50) of each herbicide was calculated (cell viability) in human hepatic C3A cells and 1000-fold lower concentrations were used for transcriptomic analysis (RNA-Seq) after 48h exposure, resembling current toxicological limits and considering herbicide water levels (glyphosate: 0.95 µg/mL; AMPA: 3.7 µg/mL; 2,4-D: 0.56 µg/mL). Glyphosate exposure enriched MAPK-related biological processes (upregulated TNF, FOS, IGF1, and PDGFB), and downregulated genes associated with lipid metabolism (CD36 and PPARA). Many AMPA exposure-related differentially expressed genes (DEGs, such as PFKFB3, HK2, and ALDOA) were associated with glucose metabolic pathways. Glyphosate and its metabolite yielded a common molecular signature, as illustrated by principal component analysis and the function of 212 shared DEGs. The exposure to 2,4-D was associated with the JNK cascade and the solute carrier family annotations. The herbicide mixtures had a discrete effect on enhancing the impact of individual herbicides, although important epithelial-mesenchymal transition genes were exclusively modified by the mixes (COL11A2, LOXL3, SNAI1). Altogether, our data reveals new perspectives on the short-term molecular effects of herbicide exposure in liver cells, emphasizing potential avenues for further exploration.
Project description:Glyphosate is one of the most widely used herbicides globally. It acts by inhibiting an enzyme in an aromatic amino synthesis pathway specific to plants and microbes, leading to view that glyphosate poses no risk to other organisms. However, there is growing concern that glyphosate is associated with detrimental health effects in humans, and an ever-increasing body of evidence suggests that glyphosate affects other animals including pollinating insects such as bees. Although pesticides have long been considered a contributing factor in the decline of wild bee populations most research on bees has focussed on demonstrating and understanding the effects (particularly sublethal ones) of insecticides. To assess whether glyphosate poses a potential risk to bees we characterised the changes in survival, behaviour, digestive tract proteome and microbiome in the bumblebee Bombus terrestris after chronic exposure to field relevant doses of glyphosate alone and as part of the commercially available product RoundUp Optima+®. Regardless of source, changes in response to herbicide exposure in important cellular and physiological processes in the digestive tract of B. terrestris were observed, with the abundances of proteins associated with oxidative stress regulation, metabolism, cellular adhesion, the extracellular matrix, and various signalling pathways being altered. Interestingly, endocytosis, oxidative phosphorylation, the TCA cycle, and carbohydrate, lipid, and amino acid metabolism were differentially altered depending on whether the exposure source was glyphosate AI or RoundUp Optima+®. In addition, RoundUp Optima+®, but not the active ingredient glyphosate, impacted fungal diversity in the digestive tract microbiota. Our research provides new insights into the potential mode of action and consequences of glyphosate exposure at the molecular and cellular levels in bumblebees and highlights issues with current regulatory measures involving commercial formulations of pesticides where the impact of the co-formulants on non-target organisms are generally overlooked.
Project description:Despite all debates about its safe use, glyphosate still is the most widely applied active ingredient in herbicide products with renewed approval in the European Union until 2033. Non-target organisms are commonly exposed to glyphosate as a matter of its mode of application, with its broader environmental and biological impacts remaining under investigation. Glyphosate displays structural similarity to phosphoenolpyruvate (PEP), thereby competitively inhibiting the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS), crucial for the synthesis of aromatic amino acids in plants, fungi, bacteria, and archaea. The majority of microbes, including the gut bacterium Escherichia coli (E. coli), possess a glyphosate-sensitive class I EPSPS, making them vulnerable to glyphosate's effects. Yet, little is known about glyphosate’s interactions with other bacterial proteins or its broader modes of action at the proteome level. Here, we employed a quantitative proteomics and thermal proteome profiling (TPP) approach, to identify novel protein binding partners of glyphosate in the E. coli proteome. Glyphosate exposure significantly altered amino acid synthesizing pathways, including increased abundance in shikimate pathway proteins, suggesting a compensatory mechanism. Extracellular riboflavin concentrations were elevated upon glyphosate exposure, while intracellular levels remained stable. Thermal proteome profiling indicated an effect of glyphosate on the thermal stability of certain proteins beyond the target enzyme EPSPS, including AroH and ProA. An elevated structural similarity between the substrates of the interaction candidates and glyphosate, similar to the competitive binding between PEP and glyphosate at the EPSPS, could be a reason for their interaction with the herbicide. Overall, glyphosate induced metabolic disturbances in E. coli, extending beyond its primary target, thereby providing new insights into glyphosate's broader impact on microbial systems.
Project description:In this study, the circRNAs expression pattern in hippocampus of postnatal day (PND) 28 mice offsprings which were exposured by glyphosate-based herbicide (GBH) during pregnancy and lactation was investigated. CircRNA microarray had detected 330 upregulated and 333 downregulated miRNAs in the PND28 mice offsprings' hippocampus
Project description:In this study, the lncRNAs expression pattern in hippocampus of postnatal day (PND) 28 mice offsprings which were exposured by glyphosate-based herbicide (GBH) during pregnancy and lactation was investigated. LncRNA microarray had detected 840 upregulated and 919 downregulated lncRNAs in the PND28 mice offsprings' hippocampus
Project description:In this study, the miRNAs expression pattern in prefrontal cortex (PFC) of postnatal day (PND) 28 mice offsprings which were exposured by glyphosate-based herbicide (GBH) during pregnancy and lactation was investigated. MiRNA microarray had detected 55 upregulated and 19 downregulated miRNAs in the PND28 mice offsprings' PFC.
Project description:Small RNAs have emerged as a promising new type of biomarker to monitor health status and track the development of diseases. Here we report changes in the levels of small RNAs in the liver of rats exposed to a mixture (MIX) of six pesticides frequently detected in foodstuffs (azoxystrobin, boscalid, chlorpyrifos, glyphosate, imidacloprid and thiabendazole), and glyphosate (G50) (50 mg/kg bw/day), or its representative EU commercial herbicide formulation Roundup MON 52276 (R50) at the same glyphosate equivalent doses in comparison to a control group (CON).
Project description:Using whole genome microarray (Affymetrix ATH1) we studied the transcriptional response of Arabidopsis thaliana to glyphosate (Roundup Original) herbicde that inhibits 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) enzyme and thus disrupts aromaticamino acid biosynthesis. Few genes related to defense and secondary metabolism were altered. Experiment Overall Design: Surfactant (preference 0.25%) treated plants were used as carrier control group and EC50 concentration of glyphosate was used as the herbicide treatment group. Each of the control and treatment group consisted of 3 biological replicates and each biological replicates comprised leaves from 10 individual plants. RNA was extracted at 24h post treatment to study the transcriptional alterations caused by the herbicide treatment.