Project description:Glyphosate is one of the most widely used herbicides globally. It acts by inhibiting an enzyme in an aromatic amino synthesis pathway specific to plants and microbes, leading to view that glyphosate poses no risk to other organisms. However, there is growing concern that glyphosate is associated with detrimental health effects in humans, and an ever-increasing body of evidence suggests that glyphosate affects other animals including pollinating insects such as bees. Although pesticides have long been considered a contributing factor in the decline of wild bee populations most research on bees has focussed on demonstrating and understanding the effects (particularly sublethal ones) of insecticides. To assess whether glyphosate poses a potential risk to bees we characterised the changes in survival, behaviour, digestive tract proteome and microbiome in the bumblebee Bombus terrestris after chronic exposure to field relevant doses of glyphosate alone and as part of the commercially available product RoundUp Optima+®. Regardless of source, changes in response to herbicide exposure in important cellular and physiological processes in the digestive tract of B. terrestris were observed, with the abundances of proteins associated with oxidative stress regulation, metabolism, cellular adhesion, the extracellular matrix, and various signalling pathways being altered. Interestingly, endocytosis, oxidative phosphorylation, the TCA cycle, and carbohydrate, lipid, and amino acid metabolism were differentially altered depending on whether the exposure source was glyphosate AI or RoundUp Optima+®. In addition, RoundUp Optima+®, but not the active ingredient glyphosate, impacted fungal diversity in the digestive tract microbiota. Our research provides new insights into the potential mode of action and consequences of glyphosate exposure at the molecular and cellular levels in bumblebees and highlights issues with current regulatory measures involving commercial formulations of pesticides where the impact of the co-formulants on non-target organisms are generally overlooked.
Project description:In this study, the lncRNAs expression pattern in hippocampus of postnatal day (PND) 28 mice offsprings which were exposured by glyphosate-based herbicide (GBH) during pregnancy and lactation was investigated. LncRNA microarray had detected 840 upregulated and 919 downregulated lncRNAs in the PND28 mice offsprings' hippocampus
Project description:In this study, the circRNAs expression pattern in hippocampus of postnatal day (PND) 28 mice offsprings which were exposured by glyphosate-based herbicide (GBH) during pregnancy and lactation was investigated. CircRNA microarray had detected 330 upregulated and 333 downregulated miRNAs in the PND28 mice offsprings' hippocampus
Project description:In this study, the miRNAs expression pattern in prefrontal cortex (PFC) of postnatal day (PND) 28 mice offsprings which were exposured by glyphosate-based herbicide (GBH) during pregnancy and lactation was investigated. MiRNA microarray had detected 55 upregulated and 19 downregulated miRNAs in the PND28 mice offsprings' PFC.
Project description:Small RNAs have emerged as a promising new type of biomarker to monitor health status and track the development of diseases. Here we report changes in the levels of small RNAs in the liver of rats exposed to a mixture (MIX) of six pesticides frequently detected in foodstuffs (azoxystrobin, boscalid, chlorpyrifos, glyphosate, imidacloprid and thiabendazole), and glyphosate (G50) (50 mg/kg bw/day), or its representative EU commercial herbicide formulation Roundup MON 52276 (R50) at the same glyphosate equivalent doses in comparison to a control group (CON).
Project description:Using whole genome microarray (Affymetrix ATH1) we studied the transcriptional response of Arabidopsis thaliana to glyphosate (Roundup Original) herbicde that inhibits 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) enzyme and thus disrupts aromaticamino acid biosynthesis. Few genes related to defense and secondary metabolism were altered. Experiment Overall Design: Surfactant (preference 0.25%) treated plants were used as carrier control group and EC50 concentration of glyphosate was used as the herbicide treatment group. Each of the control and treatment group consisted of 3 biological replicates and each biological replicates comprised leaves from 10 individual plants. RNA was extracted at 24h post treatment to study the transcriptional alterations caused by the herbicide treatment.
Project description:This project aimed to investigate the effects of glyphosate-based herbicide Roundup LB Plus on bacteria. For this, ten environmental strains of Salmonella enterica were exposed to the increasing concentrations of Roundup over several passages to obtain Roundup-resistant mutants. Four stable re-sequenced resistant mutants and their respective ancestors were characterized by global proteomics in the presence and absence of sub-inhibitory (1/4xMIC) concentrations of the herbicide. By comparing the proteomes of the Roundup-challenged ancestors with constitutive non-challenged ancestors, it became possible to deepen the understanding of how Roundup stress affects naïve bacteria. Similarly, comparing Mutants versus Ancestors in the absence of Roundup allowed to understand how Roundup resistance constitutively affects bacterial physiology, while the comparison of Roundup-challenged mutants versus constitutive mutants helped improve the understanding of the inducible responses in the resistant background.
Project description:Background: Glyphosate has become the most widely used herbicide in the world. Therefore, the development of new glyphosate-tolerant varieties is a research focus of seed companies and researchers. The glyphosate stress-responsive genes were used for the development of genetically modified crops, while only the EPSPS gene has been used currently in the study on glyphosate-tolerance in rice. Therefore, it is essential and crucial to intensify the exploration of glyphosate stress-responsive genes, to not only acquire otherglyphosate stress-responsive genes with clean intellectual property rights but also obtain non-transgenic glyphosate-tolerant rice varieties. This study is expected to elucidate the responses of miRNAs, lncRNAs, and mRNAs to glyphosate applications and the potential regulatory mechanisms in response to glyphosate stress in rice. Results: Leaves of the non-transgenic glyphosate-tolerant germplasm CA21 sprayed with 2 mg•ml-1 glyphosate (GLY) and CA21 plants with no spray (CK) were collected for high-throughput sequencing analysis. A total of 1197 DEGs, 131 DELs, and 52 DEMs were identified in the GLY samples in relation to CK samples. Genes were significantly enriched for various biological processes involved in detoxification of plant response to stress. A total of 385 known miRNAs from 59 miRNA families and 94 novel miRNAs were identified. Degradome analysis led to the identification of 32 target genes, of which, the squamosa promoter-binding-like protein 12 (SPL12) was identified as a target of osa-miR156a_L+1. The lncRNA-miRNA-mRNA regulatory network consisted of osa-miR156a_L+1, two transcripts of SPL12 (LOC_Os06g49010.3 and LOC_Os06g49010.5), and 13 lncRNAs (e.g., MSTRG.244.1 and MSTRG.16577.1). Conclusion: Large-scale expression changes in coding and noncoding RNA were observed in rice mainly due to its response to glyphosate. SPL12, osa-miR156, and lncRNAs (e.g., MSTRG.244.1 and MSTRG.16577.1) could be a novel ceRNA mechanism in response to glyphosate stress in rice.